首页 > 化学装置 专利正文
一种二氧化碳-甲烷重整技术制备碳纳米管的工艺的制作方法

时间:2022-01-23 阅读: 作者:专利查询

一种二氧化碳-甲烷重整技术制备碳纳米管的工艺的制作方法

1.本发明属于先进碳材料制备技术和工业催化技术领域,具体涉及一种二氧化碳-甲烷重整技术制备碳纳米管的工艺。


背景技术:

2.碳纳米管是一种由单层或多层二维石墨烯片卷积而成、具有中空的管状结构,其组成主要是sp2杂化的碳,与金刚石、石墨以及石墨烯互为同素异形体。因其优异的力学、光学、电学和热学性能,在机械、电子、材料、能源和催化等各个领域具有广泛的应用前景。目前碳纳米管的制备方法有电弧放电法、激光烧蚀法、化学气相沉积法和催化化学气相沉积法,这些方法制备过程复杂,而且因为工艺的原因,产物中会存在残留的催化剂金属,这会对环境有影响。
3.中国专利cn105731423a公开了一种煤热解生成碳纳米管的一体化装置和方法,该装置主体内部从内到外依次设有煤热解单元、加热单元、合成单元。该方法以煤热解连续产生的甲烷为原料,将生成的碳纳米管从装置底部及时清理来保证连续化生产,同时该方法通过装置的各个单元间的热量传递,避免了传统单一合成单元供热而造成的热量浪费。但是,该装置和方法对煤的热解气利用率不高,会造成大量煤资源的浪费且只存在于常压下将煤作为热解原料。
4.中国专利cn104555989a公开了一种采用煤焦油制备碳纳米管的方法,该方法为:先将fe3o4进行敏化处理、镀镍,得到含铁催化剂,然后对煤焦油汽化后的气体进行催化热解,在热解过程中施加中频感应电源,最后过筛干燥处理得到碳纳米管。该方法对设备要求较高,需要加热900~1300℃且还要施加频率5khz~10khz,电流为10a~200a的中频感应电源,能耗较高,因此生产成本较高。
5.中国专利cn103569998a公开了一种碳纳米管制备装置及方法,包括一个反应腔,反应腔有进气管、基片承载盘、出气管组成。基片垂直或倾斜的置于基片承载盘上,使基片与烃类气体充分接触,有利于碳纳米管的均匀生长。但该装置仅限于烃类气体热解生产碳纳米管,生产成本高且该装置只能进行常压下气体的热解反应。
6.在众多制备方法中,由于化学气相沉积法采用催化剂热分解制备,因而该方法具有产量大,副产物少的优点,该方法采用的热解前驱体为含碳量高且热稳定性差的有机物,如:乙炔,甲烷,乙烯等。但是上述有机物也有明显的缺陷,其一:使用安全性较差,上述有机物均为气体,在制备的过程中原料混入少量空气即可发生爆炸;其二:上述有机物价格昂贵,直接导致原料成本增加。


技术实现要素:

7.本发明针对传统制备碳纳米管工艺中资源浪费,生产成本过高,产率低等问题,提供一种二氧化碳-甲烷重整技术制备碳纳米管的工艺。
8.本发明采用如下技术方案:
一种二氧化碳-甲烷重整技术制备碳纳米管的工艺,包括如下步骤:第一步,原料气的预热及脱硫处理:二氧化碳和甲烷分别通入预热器中混合预热,之后,通入加氢脱硫装置中,脱除其中的硫,防止后续反应器中催化剂中毒。
9.第二步,碳纳米管的制备及合成气的产生:经脱硫后的原料气通过换热器进行预热,达到反应温度后,通入重整反应器,在催化剂床层进行碳纳米管的制备及合成气的产生,得到粗碳纳米管产品。
10.第三步,热量回收与利用:在重整反应器中反应完后的气体流入上一单元的换热器中对原料气进行加热,利用废热锅炉对热量回收,产生的蒸汽用于对预热器中的原料气进行预热。
11.第四步,碳纳米管收集及处理:在重整反应器中生成的粗碳纳米管产品经酸洗、超声分离等步骤得到纯碳纳米管。
12.第五步,合成气的收集:在重整反应器中生成的合成气经换热器、废热锅炉热量回收后,在气体分离净化单元获得合成气,未反应的甲烷、二氧化碳返回重整反应器之前。
13.进一步地,第一步中二氧化碳和甲烷通入预热器的体积流量均为1-10l/min。
14.进一步地,第一步中所述甲烷的原料气包括天然气、焦炉煤气、煤层气、油田气、炼厂气、甲醇和费托合成驰放气中的任何一种或者几种。
15.进一步地,第一步中所述预热温度为380℃。
16.进一步地,第一步中所述脱硫装置中的脱硫剂为氧化锌,脱硫处理的温度为350-400℃。
17.进一步地,第二步中换热器预热温度为600-800℃,进入重整反应器的甲烷和二氧化碳的体积流量比为1:1-1:1.5,压强为0.6-0.9mpa。
18.进一步地,第二步中所述催化剂为直径为15-20*10-15
mm的蜂窝状固体钴基催化剂,所述催化剂采用共浸渍方法合成,氧化铝为载体,钴为活性组分,稀土金属钇、铈的氧化物中任意一种为助剂;以载体质量为100%计,活性组分和助剂的质量百分比含量均为5%~10%;活性组分和助剂按比例用水溶解,加入氧化铝充分搅拌,于105℃烘箱过夜干燥,后置于马弗炉中煅烧3~4小时,煅烧温度为550~600℃,升温速率为1~10℃/min,得到催化剂前驱体;催化剂前驱体在反应前须在温度为700~750℃、流速为30~60ml/min的氢气条件下还原1~2h。
19.本发明的有益效果如下:1. 本发明工艺将二氧化碳-甲烷重整技术和碳纳米管制备结合起来,以温室气体中二氧化碳、甲烷为原料,制备出高附加值的碳纳米管及合成气,实现了原料的高度利用。
20.2. 本发明制备工艺简单,原料丰富,具体有天然气、焦炉煤气、煤层气、油田气、炼厂气、甲醇或费托合成驰放气等,成本较低,可满足工业规模化生产需求。
21.3. 制备的高温合成气可用于换热单元原料气的预热、废热锅炉热量回收等,降低了整个系统的能耗。
22.4. 本发明工艺最大限度地实现温室气体(二氧化碳、甲烷)的充分利用,找到了能源高效利用和环境保护的突破口,对于缓解能源危机、减少温室气体排放都有重要意义,符
合现代绿色化工发展的趋势。
附图说明
23.图1为实施例制备的碳纳米管的场发射扫描电子显微镜图片。
24.图2为实施例制备的碳纳米管的透射电子显微镜图片。
25.图3为本发明所述碳纳米管制备工艺流程图示意图。
26.图中,1-预热器,2-加氢脱硫装置,3-换热器,4-重整反应器,5-分离装置,6-废热锅炉,7-气体分离装置。
具体实施方式
27.为对本发明的技术内容、特点与效果有更具体的了解,现结合附图和实施例对本发明作进一步的详细说明。
28.二氧化碳-甲烷重整技术制备碳纳米管的工艺:(1)原料气的预热及脱硫处理:二氧化碳、甲烷(来自于天然气、焦炉煤气、煤层气、油田气、炼厂气等)分别以1~10l/min的体积流量通入预热器1中混合预热,预热到380℃后通入加氢脱硫装置2中,以脱除其中的硫,防止后续反应器中催化剂中毒。
29.(2)碳纳米管的制备及合成气的产生:经脱硫后的原料气通过换热器3进行预热,达到所需的反应温度后通入重整反应器4,在催化剂床层进行碳纳米管的制备及合成气的产生。所用的催化剂为负载型催化剂。
30.(3)热量回收:经换热器3后的原料气进入重整反应器4中,在催化剂层进行充分的反应;反应完后的气体流入上一单元的换热器3中进行热量的回收利用。
31.(4)碳纳米管收集及处理:在重整反应器4中生成的粗碳纳米管产品经超声分离等步骤得到纯碳纳米管及可重复利用的催化剂。
32.(5)合成气的收集:在反应器中生成的合成气经换热器3、废热锅炉6热量回收后,在气体分离净化装置7获得一氧化碳、氢气为主的合成气,未反应的甲烷、二氧化碳返回重整反应器4之前。
33.本发明的碳纳米管制备的具体的工艺流程如下:如图3所示,将二氧化碳和甲烷为按一定比例混合作为原料通入预热器1中混合预热,加热到380℃后通入加氢脱硫装置2中,以脱除其中的硫;经脱硫后的原料气通过换热器3进行预热,达到所需的反应温度后通入重整反应器4,在催化剂床层进行碳纳米管的制备及合成气的产生;产生的合成气接入上一单元的换热器3,对原料气进行加热,后通入后续的废热锅炉单元6进行热量的再回收;经上一单元热量回收后的合成气进入气体分离净化装置7,此单元使用psa或深冷,净化后可以获得一氧化碳、氢气为主的合成气,未反应的二氧化碳、甲烷返回重整反应器之前;在重整反应器4中生成的粗碳纳米管产品在分离装置5中经超声分离得到纯碳纳米管及可重复使用的催化剂。
34.催化剂采用氧化铝为载体,钴为活性组分,钇为助剂制备的催化剂,以催化剂的载体质量为基准,活性组分的质量百分含量为10%,助剂的质量百分含量为5%。催化剂制备过程中,煅烧温度为550℃,煅烧4h,升温速率为5℃/min;反应前,催化剂须在60ml/min、温度750℃条件下还原活化2h。
35.实施例1按上述反应工艺流程提供具体的实施例:二氧化碳体积流量1.5l/min,甲烷流量1.5l/min;物料比为二氧化碳:甲烷=1:1;控制反应温度为800℃,压强为0.7mpa,原料气在催化剂的作用下在反应器中充分反应,经工艺得到碳纳米管和合成气产品。在本实施例中,甲烷转化率85%,二氧化碳转化率91%,氢碳比0.85,碳纳米管产率为40%。
36.实施例2按上述反应工艺流程提供具体的实施例:二氧化碳体积流量1l/min,甲烷流量1l/min;物料比为二氧化碳:甲烷=1:1;控制反应温度为800℃,压强为0.7mpa,原料气在催化剂的作用下在反应器中充分反应,经工艺得到碳纳米管和合成气产品。在本实施例中,甲烷转化率92.5%,二氧化碳转化率94.7%,氢碳比0.92,碳纳米管产率为26%。
  •  标签:  
  • 相关阅读
    暂无相关信息