专利名称:丙烯酰胺的制备方法
技术领域:
本发明涉及在铜基催化剂存在下使丙烯腈被水催化水合制备丙烯酰胺的方法。更具体地,本发明涉及用作制备高品质丙烯酰胺的原料的丙烯腈的纯化方法,所述高品质丙烯酰胺可以制备具有足够高的分子量和很好的水溶性的聚合物。
长期以来丙烯酰胺以丙烯酰胺聚合物的形式被用作造纸化学品、絮凝剂、油回收剂等,它还被广泛用作各种聚合物的共聚用单体原料。对于这类应用的丙烯酰胺的制备方法,过去使用所谓的硫酸法,但是最近几年中、已经开发并且正在工业上实施在铜基催化剂存在下进行反应的催化法以代替硫酸法。
在上述丙烯酰胺的应用中,近年来发现特别是絮凝剂还可用来处理污水等。为此,目前正在作大量努力提高絮凝剂的质量和性能。其中,显著倾向于用高分子量的丙烯酰胺聚合物作絮凝剂,因为据说随着其分子量增高其性能更好。目前要求其具有高分子量为10,000,000或更高、特别是约15,000,000。丙烯酰胺聚合物或用于其他用途的其他聚合物所需分子量通常为1,000,000或更低,与此相比上述分子量是相当高的。此外,要求这样得到的丙烯酰胺聚合物能很快溶于水而后不留下任何不溶物,因为它通常以溶于水的形式用作絮凝剂。考虑到丙烯酰胺单体的毒性,要求包含在每一聚合物中的未反应的单体为痕迹量,例如不大于0.2wt%。
这些要求与要求较高的分子量相矛盾,因此已付出巨大努力来实现它们。尽管这种高分子量的丙烯酰胺聚合物仅仅是丙烯酰胺应用的一个实例,但它们不能提供各种一般用途,除非它们适用于作絮凝剂。本发明的方法是关于可以提供这种应用的丙烯酰胺的制备。
本文中所用的术语“分子量”是指通过在下文所述的实施例1中所示的试验方法测定的分子量。水溶性具有的意义通常是当在水溶液介质中得到的聚合物被干燥成水含量为20wt%或更低,特别是约10wt%的干燥粉末。本文中所用的术语“水溶性”基本上是在这种意义上使用。
为了制备具有如上所述这样高的分子量和足够的水溶性的丙烯酰胺聚合物。认为重要的是不仅要注意聚合物的制备方法,而且要注意丙烯酰胺的质量。此外,也要考虑到作为原料的丙烯腈的质量会极大地影响这种丙烯酰胺聚合物的产率。
丙烯腈一般是通过丙烯的氨氧化来合成。丙烯酸类纤维和ABS树脂说明了丙烯腈的主要用途。用作通过催化水合法制备丙烯酰胺的原料的丙烯腈,要求其具有较高的质量,以便它含有的杂质小于用于上述主要用途的丙烯腈中的杂质。为满足这种要求,通常采取的措施是使蒸馏纯化步骤的操作条件更为严格。
为制备适于催化水合法的丙烯腈,现已提出几种方法。
例如,根据日本专利公开号118305/1988(相应于美国专利号4,177,210)使原料丙烯腈与H-型阳离子交换树脂接触,以降低丙烯腈中噁唑的含量至200ppm或更低,优选降低至25ppm或更低。该专利还公开了,在铜基催化剂存在下通过使丙烯腈水合合成的丙烯酰胺具有较高的稳定性,并且当其聚合时,与由含噁唑的丙烯腈合成的丙烯酰胺相比,得到了具有更高粘度的水溶液。该专利还公开了阳离子交换树脂的再生方法。即将阳离子交换树脂与热水、水蒸汽、甲醇、微酸性水溶液或其混合物接触。
日本专利公开号26264/1982公开了当用无机酸或酸性阳离子交换树脂将丙烯腈纯化时,在铜基催化剂存在下的水合反应中,与未纯化的丙烯腈相比,这种纯化的丙烯腈能够避免催化活性的退化。
日本专利公开号26586/1982公开了当通过使丙烯醛与乙酰丙酮等反应,然后用蒸馏等方法将反应产物与丙烯腈彼此分离,从而使丙烯腈中丙烯醛的浓度降低到1.5ppm或低,优选降低到0.8ppm或更低时,则通过在铜基催化剂存在下使丙烯腈经水合而得到的丙烯酰胺可以提供具有好的水溶性的聚合物。
日本专利公开号1108/1983公开了通过使丙烯腈与具有伯/或仲氨基作为交换基团的多孔离子交换树脂接触,从而将丙烯腈中丙烯醛的含量降低到0.8ppm或更低,然后使得到的丙烯腈在铜基催化剂存在下经水合而得到丙烯酰胺,这样得到的丙烯酰胺能够提供具有很好的水溶性和足够高的分子量的聚合物。
类似地,日本专利公开号134063/1983公开了当通过使丙烯腈与含有伯和/或仲氨基的凝胶型弱碱性离子交换树脂接触以降低丙烯腈中醛特别是丙烯醛的含量时,丙烯腈可以形成能够提供具有改进的水溶性的聚合物的丙烯酰胺,此外当丙烯酰胺本身以类似的方法被处理时,所处理的丙烯酰胺可以提供具有改进的水溶性和足够高的分子量的聚合物。
根据日本专利公开号9303/1986,使丙烯腈经水萃取和/或水萃取及蒸馏以降低丙烯腈的含量至20ppm或更低,优选至10ppm或更低,然后在铜基催化剂存在下,在100-140℃的温度下使丙烯腈经过水合。该专利公开了这种丙烯酰胺能够提供具有改进的水溶性的聚合物。
此外,于1948年颁布的美国专利2,444,589指出,由无机氰化物和有机物合成的丙烯腈含有痕量离子性杂质和痕量中性杂质,这些杂质妨碍了由原料丙烯腈中分离合成的反应产物,降低了其产量。该专利还公开到,当将这种丙烯腈用阳离子交换物质(例如,苯甲醛缩合产物、磺化煤等)和阴离子交换树脂(例如,胍、脲或甲醛的缩合产物)处理以除去离子性物质,然后用脱色剂(例如,活性炭)处理进,通过单单使用离子交换物质或脱色剂不可行的脱色则为可行的了。此外,该专利在其一实施例中还公开了已经用阳离子交换树脂、阴离子交换树脂和活性炭按所提出的顺序依次处理处的丙烯腈可提供高的聚合粘度。
根据本发明人的发现,通过在铜基催化剂存在下使丙烯腈与水进行催化水合所得的丙烯酰胺,当其自身聚合或与另一共聚用单体聚合时,其质量不能提供具有足够水溶性和分子量的丙烯酰胺聚合物,即使通过使用上述现有技术除去了丙烯腈中的噁唑、丙烯醛、乙腈等。
现在常用的方法中采用更严格的与蒸馏有关的纯化步骤的操作条件,以制备低杂质含量的丙烯腈作为制备丙烯酰胺的原料,这种方法包括了在与蒸馏有关的纯化步骤中有极大的回收损失和增加的能耗如蒸汽。尽管在催化水合反应中使用如此得到的低杂质含量的丙烯腈一般会产生优质的丙烯酰胺,但在某些情况下得到的产物可能没有足够好的质量。因此,这种方法不足以保证质量的稳定性,并且不适于作为生产高品质丙烯酰胺的工业用制备方法。
在美国专利2,444,589在1948年颁布时,所述美国专利已经在工业上实施它包括上述关于使用阳离子交换树脂、阴离子交换树脂和活性炭的实施例,它既不包括(a)通过丙烯的氨氧化反应的丙烯腈的制备方法,也不包括(b)在铜基催化剂存在下通过丙烯腈的水合反应的丙烯酰胺的制备方法。该美国专利不包括任何公开内容(C)对于按照该专利方法通过丙烯的氨氧化制备的丙烯腈的纯化或(d)通过丙烯腈的催化水合所得到的丙烯酰胺对于通过丙烯酰胺单独地或与另一共聚用单体聚合所得到的丙烯酰胺聚合物的影响。而且,纯化(C)或影响(d)至今尚属未知。
尽管在上述实施例中,按照所给出的顺序将丙烯腈用阳离子交换树脂、阴离子交换树脂和活性炭处理,但该专利所公开的内容是通过除去离子性物质很容易地除去引起变色等的中性杂质。换言之,在用脱色剂(例如,活性炭)处理之前只需进行阳离子交换处理和阴离子交换处理。上述美国专利没有具体指出在离子交换处理中阳离子交换处理和阴离子交换处理的顺序。
本发明人已经对用作制备丙烯酰胺原料的丙烯腈的纯化方法进行了广泛的研究,以便通过丙烯酰胺的聚合来提供具有足够的水溶性和分子量的丙烯酰胺聚合物,这便形成了本发明。
本发明的上述目的可以通过实施制备丙烯酰胺的方法来实现,该方法包括使丙烯腈与至少强酸性阳离子交换树脂接触,然后与具有伯和/或仲氨基的树脂或与活性炭接触,之后使所得到的丙烯腈在铜基催化剂存在下发生水合反应。
本发明的一个具体方面提供了一种方法,该方法包括分两步处理丙烯腈,即使丙烯腈与至少强酸性阳离子交换树脂接触,然后与具有伯和/或仲氨基的树脂接触,之后在铜基催化剂存在下使所得丙烯腈经水合反应。本发明的另一方面还提供了一种方法,该方法包括分两步处理丙烯腈,即使丙烯腈与至少强酸性阳离子交换树脂接触,然后与活性炭接触,之后在铜基催化剂存在下使所得丙烯腈经水合反应。
在本发明中,丙烯腈优选为通过丙烯的氨氧化反应制备的丙烯腈。在使丙烯腈与强酸性阳离子交换树脂接触后,优选使丙烯腈先与具有伯和/或仲氨基的树脂接触,然后再与活性炭接触。在使丙烯腈与具有伯和/或仲氨基的树脂接触后,最好使丙烯腈先与强酸性阳离子交换树脂接触,然后再与活性炭接触。另一优选方案是,在使丙烯腈与强酸性阳离子交换树脂接触后,可以使丙烯腈先与活性炭接触,然后与具有伯和/或仲氨基的树脂接触。
在本发明中作为优选方案的术语“通过丙烯的氨氧化反应制备丙烯腈的方法”是指通过气相催化氨氧化反应的制备方法,其中在催化剂如钼-铋催化剂、铀-锑催化剂或铁-锑催化剂存在下使丙烯、氨和氧或空气的气态混合物直接反应。
一般是将丙烯腈吸收于水中将其从合成反应气中回收出来,在随后的纯化和分离步骤中,使其与副产物如氢氰酸、乙腈、丙酮、丙烯醛、甲基丙烯腈、噁唑和醛类相分离。蒸馏主要用于纯化和分离。然而,当丙烯腈作为制备丙烯酰胺的原料被制备时,常用的做法是使蒸馏和纯化的条件更为严格以便使杂质减少。
然而,本发明的应用能够提供具有一般质量的丙烯腈作为制备丙烯酰胺的原料。
下文将简述可以应用本发明的丙烯酰胺的制备方法。
用于本发明方法的铜基催化剂的实例包括(A)以铜线或铜粉形式的铜与铜离子的组合;
(B)通过用还原剂还原铜化合物的铜基催化剂(还原铜)(C)通过加热等使铜化合物分解得到的铜基催化剂(作为分解产物的铜);和(D)通过用碱等将铝自阮内合金中溶解出来所得到的铜基催化剂(阮内铜)。
还原铜的制备方法的实施包括(1)在气相中用氢、一氧化碳或氨还原氧化铜;
(2)在水溶液中用甲醛、肼或硼氢化钠还原铜盐或氢氧化铜;
(3)在水溶液中用元素铝、锌或铁还原铜盐或氢氧化铜。
在每一方法中、还原产物的主要催化成分被认为是元素铜。
作为分解产物的铜的制备方法的实例包括(1)氢化铜的热分解,氢化铜是通过在碱性水溶液中用次氯酸钠处理铜化合物而得到的;
(2)甲酸铜或草酸铜的热分解;
(3)在日本专利公开号108015/1974中公开的所谓簇形铜的热分解;
(4)乙炔化铜或氮化铜对丙烯腈水合反应体系的直接加成。
在包括方法(4)的每一方法中,分解产物的主要催化成分被认为是元素铜。
阮内铜的制备方法的实例包括
(1)用苛性苏打、硫酸、水、有机胺等将铝自铜铝合金中基本完全溶解出来;
(2)用苛性苏打、硫酸、水、有机胺等将铝自铜-铝合金中部分溶解出来,以便使一部分铝与铜留在一起。
在每一方法中,溶解产物的主要催化成分被认为是元素铜。
这些铜基催化剂可以载于常用的载体上的形式而使用。它们也可以含有除铜以外的金属,例如铬或钼。
尽管上述铜基催化剂其催化活性本身会随着制备方法的不同而变化,但反应方式如副反应在使用不同的铜基催化剂,例如在还原铜、氢化铜、阮内铜等之间并没有差别。对于杂质的产生铜基催化剂具有相同的趋势。
在催化剂使用之前和之后最好避免使催化剂与氧或含氧气体接触,因为氧使铜基催化剂丧失催化活性并增加了副产物,如3-羟基丙腈。
如下所述,本发明的丙烯腈的水合反应是在铜基催化剂存在下进行的。反应是在液相中连续或间歇地进行,同时使用悬浮或固定床形式的催化剂。
进行水合反应的丙烯腈与水两者的重量比可以根据需要实际测定。优选的重量比范围可以是60∶40至5∶95,较优选的范围是50∶50至10∶90。优选的丙烯腈转化率为10%至98%,较优选的范围是30%至95%。
丙烯腈与水的水合反应的反应温度优选为50℃至200℃,较优选范围是70℃至150℃。
反应器内部被保持在压力下,该压力是在上述温度下反应物及组合物的蒸汽压,或在加入惰性气体如氮气时,该压力是蒸汽压和惰性气体压力的总和。该压力一般在常压至10atm的范围内。氧气通常以溶解的形式被包含在催化剂、丙烯腈、水等中,它们一起被进料到反应器中,而氧气破坏了催化剂的活性并增加了副产物如3-羟基丙腈。因此,在将它们加入反应器之前最好完全除去这种氧。基于同样的原因,最好还是将反应器内部保持在无氧气氛下。在水合反应之后自反应器排出的液态反应混合物主要包括未反应的丙烯腈、未反应的水和丙烯酰胺,此外还含有副产物如3-羟基丙腈及铜。
若需要,可以使通过上述反应得到的液态反应混合物经过常规的蒸发或蒸馏,从而得到丙烯酰胺的浓缩水溶液,并回收得到未反应的丙烯腈和水馏出液。这些回收物料可以作为新的反应原料而再度使用。
本文中所述的丙烯腈中杂质等的含量是指新进料的丙烯腈中杂质的含量,而不是指在新进料的丙烯腈和回收及再使用的丙烯腈的混合物中杂质的含量。
通过浓缩液态反应混合物所得到的丙烯酰胺水溶液在下文中将被简单地称作“丙烯酰胺水溶液”,它可以再通过各种纯化方法被纯化,如阳离子交换处理,螯合树脂处理、阴离子交换处理、空气或氧气处理、以及活性炭处理。此外,还可以使用以类似于活性炭或离子交换树脂的方法使用的所谓的合成吸附树脂(例如,“Adsorbent Resin”,商标名;Hokuetsu Carbon Industry Co.,Ltd,的产品)。在上述纯化步骤过程中或之后,可以使丙烯酰胺水溶液经过上述浓缩处理或可以再浓缩。
下面将详细描述丙烯腈的纯化方法。
用于纯化丙烯腈的强酸性阳离子交换树脂(a)可以是凝胶型树脂,如“Leratit S-100”(商标名;BayerAG的产品)、“Diaion SKIB”(商标名;Mitsubishi Kasei Corp、的产品)或“Dowex HCR-W2”(商标名;Dow Chemical Co的产品),或者是大孔树脂,如“Levatit SP-112”(商标名;BayerAG的产品)或“Dowex MSC.1”(商标名;Dow Chemical Co的产品)。尽管这样的树脂可以通过用稀酸预处理使其转变为H-型然后用水彻底洗涤而被使用,但更好的是将这种树脂用热空气或干燥氮气或在减压下充分干燥后再使用。
当使用含有伯和/或仲氨基的树脂时,其必须含有伯氨基或仲氨基或两者。例如,可以使用多孔树脂如“DiaionWA-20”(商标名;Mitsubishi Kasei Corp的产品)或凝胶型树脂如“Levatit OC1059”(商标名;BayerAG的产品)。可以使用用水彻底洗涤后的商品化产品。当然可以使用用稀碱溶液处理后并进行了同样彻底洗涤的商品化产品。此外,无论是否进行用稀碱溶液的预处理,水洗树脂都要在用热空气或干燥氮气或在减压下充分干燥后才能被使用。
当与活怀炭接触时,对于活性炭的类型没有具体的限制。有用的实例包括煤基活性炭,如“Calgon CPG”(商标名;Calgon Corp.的产品)和椰子壳基活性炭如“ShirasagiLHC”(商标名;Takeda Chemical Industries,Ltd.的产品)。这些商品化的活性炭可以被这样使用。不用说,它们都要在用水洗涤或然后用热空气或干燥氮气或在减压下充分干燥之后才能被使用。
这些树脂和活性炭的使用均可以通过将其作为固定床装在柱等中,然后使丙烯腈连续地与其接触而纯化。也可以以间歇处理方式来使用它们。然而前者更有利于纯化效率、操作的容易性等。
根据本发明,在丙烯腈的纯化过程中,主要是使丙烯腈与强酸性阳离子交换树脂(a)接触。此外,也可以使丙烯腈与(b)含有伯和/或仲氨基的树脂和/或(c)活性炭接触。这些接触的顺序可以是1)(a)→(b),2)(a)→(c),3)(a)→(b)→(c),4)(b)→(a)→(c)或5)(a)→(c)→(b)。
它们均在本发明范围之内。按照任一顺序1)至5)进行纯化处理时,都可以使丙烯腈预先与活性炭(c)接触来纯化。这种操作也包含在本发明范围之内。
当这些树脂和活性炭以装在柱中的形式被使用时,这些柱应当由耐丙烯腈的材料制成,例如,SUS-304等。
在通过这些柱处理丙烯腈时,丙烯腈的温度一般为5-50℃,优选15-30℃。通过每个柱的丙烯腈的流率可以选自每小时0.1-50倍的流率,优选每小时约0.5-10倍,两者均是相对于装在柱中的树脂或活性炭的体积而言的。
在丙烯腈与强酸性阳离子交换树脂(a)接触过程中,当检测出有以噁唑为代表的碱性物质流出时,可以通过使室温至100℃的水、水蒸气、甲醇、稀酸或其混合物与树脂(a)接触,而使树脂(a)极容易地再生。
用如上所述得到的纯化的丙烯腈进行丙烯酰胺的制备,是通过在铜基催化剂存在下使丙烯腈与水进行催化水合反应。然后使该丙烯酰胺再单独地或与另一单体一起聚合,得到丙烯酰胺聚合物。发现丙烯酰胺聚合物具有极大改善了的水溶性和足够高的分子量。
按照类似于上述的纯化方法进行除上面1)至5)以外的纯化方法,例如,ⅰ)仅仅用强酸性阳离子交换树脂(a)纯化丙烯腈,ⅱ)仅用含有伯和/或仲氨基的树脂纯化丙烯腈,ⅲ)仅用活性炭纯化丙烯腈,ⅳ)包括以与强酸性阳离子交换树脂(a)接触作为最后步骤的方法,例如(b)→(a),(b)→(c)→(a),等等。经分析确证在处理ⅰ)中消除了噁唑,在处理ⅱ)中消除了丙烯醛,在处理ⅳ中消除了噁唑和丙烯醛。
无论将哪种纯化的丙烯腈通过上述在铜基催化剂存在下与水的催化水合反应而用于制备丙烯酰胺,所得到的丙烯酰胺当其单独聚合或与另一共聚用单体一起聚合时,都不能得到具有令人满意的水溶性的丙烯酰胺聚合物。
在这方面可以作出下列解释。处理方法ⅰ)仅能除去噁唑,而处理方法ⅱ)仅能除去丙烯醛。因此,分另由处理方法ⅰ)和ⅱ)得到的丙烯腈样品具信不具有足够的纯度。由已除去了噁唑和丙烯醛的处理方法ⅳ)得到的丙烯腈样品也不能有效地得到具有改进质量的丙烯酰胺。其原因是,用强酸性阳离子交换树脂(a)作为最后一步的处理会反过来导致增加除丙烯醛外的杂质如醛类的含量,从而不能得到具有改进质量的丙烯酰胺。
在方法1)至5)中,方法3)能够产生最佳结果,即能够得到高品质的丙烯酰胺,在方法3)中按照所提出的顺序使丙烯腈与(a)强酸性阳离子交换树脂,(b)含有伯和/或仲氨基的树脂及(c)活性炭接触。
尽管其原因尚未被充分地阐明,但本发明对于丙烯腈的纯化已经产生了效果,即不仅单单通过强酸性阳离子交换树脂、含有伯和/或仲氨基的树脂及活性炭去除了杂质,而且通过(a)强酸性阳离子交换树脂,(b)含有伯和/或仲氨基的树脂及(c)活性炭以所提出的顺序所产生的结合或协同作用去除了某些特定的不需要的杂质。
下面将简述用作絮凝剂的高分子量的丙烯酰胺聚合物的制备方法。
丙烯酰胺或被单独使用或与共聚的乙烯基共聚单体一起使用。共聚单体的实例包括丙烯酸、甲基丙烯酸及其水溶性盐;烷基氨基烷基丙烯酸酯和甲基丙烯酸酯,及其季胺盐衍生物;N-(二甲氨基丙基)甲基丙烯酰胺及其季铵盐衍生物;乙酸乙烯基酯;和丙烯腈。对于这种共聚单体与丙烯酰胺的混合比,通常每100摩尔丙烯酰胺可以使用共聚单体的量为100摩尔或更少,优选50摩尔或更少。
丙烯酰胺与共聚单体之间的聚合是通过本领域的已知方法进行的,如水溶液聚合法或乳液聚合法。下面将描述最广泛使用的水溶液聚合法的一般方法。
通常将丙烯酸胺和共聚单体的总浓度定在5-60wt%。聚合引发剂的有用的实例包括过氧化物如过硫酸钾、过硫酸铵、过氧化氢和过氧化苯甲酰;偶氮自由基引发剂如偶氮二异丁腈、2,2′-偶氮双(4-脒基丙烷)二盐酸盐和4,4′-偶氮双(4-氰基戊酸)钠;和所谓的氧化还原催化剂,如上述过氧化物与还原剂如亚硫酸氢钠、三乙醇胺和硫酸亚铁铵的组合物。
关于聚合反应的温度,通常采用绝热聚合,其中丙烯酰胺和共聚单体的总浓度为15wt%或更高,所得聚合物分子量为10,000,000或更大,因为通过冷却等很难控制温度。在这种情况下,随着聚合反应的进行,反应体系的温度因聚合热而升高。在此情形中,聚合反应开始时的温度通常选自-5℃至40℃,反应结束时温度高达55℃至100℃。
为达到10,000,000或更高的分子量,特别是为15,000,000的高分子量,应设计丙烯酰胺和共聚单体的总浓度、所用的聚合反应引发剂的种类和浓度、反应温度等。也可以采取类似灵活的措施以降低未反应的丙烯酰胺的含量至痕量,例如0.2wt%或更低。特别是,已经提出并实施了许多方法,这些方法的特征在于使用在不同的温度范围内起作用的两种或多种聚合反应引发剂。
通过如上所述的这种聚合反应所得到的聚丙烯酰胺是含水凝胶型的,即基本上含有使丙烯酰胺和共聚单体形成水溶液所用的全部水的橡胶状凝胶。为使其转化为无水粉未类产品,通常对以含水凝胶或无水凝胶形式的聚丙烯酰胺要做进一步的加工,如通过萃取水而脱水或加热干燥,或压碎或磨碎。在这些加工之前或过程中,可以通过在含水凝胶中混入苛性苏打并加热所得物质,而对丙烯酰胺聚合物做化学上的改性,从而将某些酰氨基转化为羧基。
由于增加了分子量,减少了未反应的单体、形成了无水粉未,以及在某些情况下进行的如上所述的化学改性,使所得的聚合物常常几乎不溶于水,并往往失去了其作为商品化产品如促凝剂的意义。为克服这一问题,可实施在聚合反应之前,过程中或之后加入一种不溶解预防剂,使用特殊的聚合反应引发剂,或在特定条件下进行含水凝胶的干燥。
根据如上所述的包括丙烯腈的纯化、水合、蒸馏、各种纯化处理及其他附加步骤的方法,制备用于实施本应用方法的丙烯酰胺,并将其用于制备具有如上所述的高分子量的丙烯酰胺聚合物。
通过下列实施例更详细地描述本发明。
实施例1<丙烯腈的纯化>
将1升强酸性阳离子交换树脂(“Levatit S-100”,商标名;BayerAG的产品)的用稀盐酸处理成为H型,然后按常规方法用水彻底洗涤,将其在常压下于90℃干燥约8小时,然后装入内径为70mm、长400mm且用SUS-304制成的柱中。将1升含有伯和/或仲氨基的树脂(“DiaionWA-20”,商标名;Mitsubishi Chemical Corp.的产品)用水洗涤,然后装入内径为70mm、长400mm且用SUS-304制成的柱中。将1升活性炭(“Calgon CPG”,商标名;Calgon Corp的产品)用水洗涤,然后装入内径为70mm、长400mm且用SUS-304制成的柱中。
按照“LevatitS-100”作第一个柱、“DiaionWA-20”作第二个柱,“CalgonCPG”作第三个柱的顺序将这三个柱连接在一起。然后,使通过丙烯氨氧化反应制备的丙烯腈以6l/hr的流量通过过些柱。用作原料的丙烯腈中杂质的浓度(LOT1)被列于表1。由这些浓度可推测、丙烯腈具有用于制备丙烯酸纤维等的一般的品质。通过柱处理后的纯化的丙烯腈的杂质浓度也示于表1中。
<丙烯酰胺的制备>
用通过上述方法制备的纯化的丙烯腈,在如下所述的铜基催化剂存在下,使纯化的丙烯腈经水合反应制得丙烯酰胺。
用于水合反应的催化剂按照本领域已知的方法,用苛性苏打将铝自不大于80目的阮内铜合金中溶解出来,然后洗涤得到阮内铜催化剂。在制备过程中及后处理时,要保持催化剂不与任何含氧气体如空气接触。
催化水合反应器由SUS制成,内装有搅拌器和催化剂分离器,其容量为约2升,向该反应器中加入400g上述催化剂。分别以600g/hr和900g/hr的速度加入已经预先用氮气除去了溶解氧的丙烯腈和水,在120℃下反应。将液态反应混合物与催化剂一起搅拌成为悬浮液。然后使悬浮液通过催化剂分离器,将基本上不含催化剂的所得溶液排出反应器,该反应连续进行了3天。
浓度使如此得到的液态反应混合物以间歇方式于减压下浓缩,以蒸馏出全部未反应的丙烯腈和部分未反应的水,从而得到浓度为约50wt%的丙烯酰胺水溶液。该丙烯酰胺水溶液含有铜。
去铜处理用150ml已经用稀盐酸预处理成H-型的强酸性阳离子交换树脂(“LevatitSP-112”,商标名;Bayer AG的产品)填充玻璃制成的柱。使通过上述浓缩处理得到的丙烯酰胺水溶液以900ml/hr的流量通过该柱。所得溶液的铜含量和PH分别为0.01ppm或更低和3.5-4.0。
PH调节在去铜处理过程中连续加入苛性苏打,使溶液的PH在去铜处理下保持在约6.5。
<丙烯酰胺聚合物的制备方法>
使以上述方式得到的丙烯酰胺水溶液按下列方法聚合,从而得到丙烯酰胺聚合物。
将水加入丙烯酰胺水溶液中调节浓度为20wt%。将500g该溶液置于1升聚乙烯容器中,同时保持溶液在18℃,用氮气吹洗溶液以除去溶于溶液中的氧。将溶液立即放入用苯乙烯泡沫制成的热绝缘区内。
按所给出的顺序向该溶液中快速倒入已分别溶于少量水中的200×10-6mpm(对丙烯酰胺的摩尔比)4,4′-偶氮双(4-氰基戊酸钠)、200×10-6mpm二甲氨丙腈和80×10-6mpm过硫酸铵。这些试剂已经预先用氮气吹洗过,另外,在倾入过程中和倾入之前及之后,还用少量氮气吹洗上面的聚乙烯容器以防止氧气的混入。在倾入试剂后的数分钟吸气过程之后,观测到聚乙烯容器的内部温度升高。因此停止加入氮气,大约100分钟以后温度达到最高温度约70℃,将聚乙烯容器自绝热区取出,浸入97℃的水中2小时,然后浸入冷水中使其冷却下来。
将上述以含水凝胶形式得到的丙烯酰胺聚合物分成小份,经切碎机磨碎,在100℃的热空气中干燥2小时,然后在高速旋转刀片粉碎机中磨碎,从而得到干粉形式的丙烯酰胺聚合物。将干粉过筛,筛选出32-42目的粉末作为聚合物样品用于下面的测试。经热空气在125℃干燥过夜的重量损失可测定出聚合物样品的水含量。发现每个聚合物样品的水含量约为10wt%。
<丙烯酰胺聚合物的测试方法>
用下列方法测定按上述方法得到的每一聚合物样品的水溶性和标准粘度。
水溶性将600ml水放在1升烧杯中,同时用预定形状的搅拌浆搅拌水,加入0.66g(纯态中为0.6g)聚合物样品,然后以400rpm的速度搅拌2小时。所得溶液经150目金属丝网筛过滤。通过不溶物的量和过滤性来测定聚合物样品的水溶性。按下列标准排列每一聚合物样品的水溶性A-完全溶解,B-几乎完全溶解C-含有不溶物但是可过滤的D-溶液的过滤很慢以致于几乎不可能过滤不溶物。
当聚丙烯酰胺分子量为约15,000,000或更高且其水溶性被列为“B”时,认为聚丙烯酰胺具有足以用作絮凝剂的品质。当水溶性被列为“C”时,聚丙烯酰胺可以用作造纸试剂,但几乎不能用作絮凝剂。如果水浴性为D,聚丙烯酰胺便不适于用于大多数应用中,并且没有工业上的价值。
分子量为测定每一丙烯酰胺聚合物的分子量,用滤液制备不同浓度的聚丙烯酰胺聚合物水溶液,所述滤液是通过类似于用于上述水溶性测定的方法而得到的。然后向溶液中加入硝酸钠水溶液至浓度为1M。用毛细管粘度计测定特性粘度。按下式计算丙烯酰胺聚合物的分子量特性粘度=3.73×10-4×[重均分子量]0.66很偶然地,在上面水溶性试验中得到的每一滤液均为0.1wt%聚合物水溶液,其水溶性很好。向该聚合物水溶液中加入氯化钠至浓度为1M。用装有BL转换器的BL型粘度计。在25℃和转子转动速度为60rpm时测定所得溶液的粘度(标准粘度)。由于以上述方法得到的标准粘度通常作为与分子量相关的值来使用。因此在本实施例中它也与其它因素结合在一起使用。将用上述方法进行评定的结果总结于表1中。所得聚合物的水溶性列为“A”,其标准粘度为5.7cps(分子量约15,800,000)。因此该聚丙烯酰胺具有优良的品质。
对比实施例1重复实施例1的步骤,不同的是删除对丙烯腈的纯化。所得聚丙烯酰胺的水溶性被列为“D”,其粘度不可测定。因此,这种聚丙烯酰胺没有工业用价值。
基于实施例1和对比实施例1现已发现将本发明用于迄今为止尚不能用作制备丙烯酰胺原料的具有一般质量的丙烯腈,能够制备具有足够高质量的可用于制备絮凝剂的丙烯酰胺。
实施例2使用丙烯腈(LOT-2)按类似于实施例1的方法制备丙烯酰胺,所用丙烯腈已经过比一般产物更严格的蒸馏和纯化而降低了杂质的含量,并且与通常用作制备丙烯酰胺的原料丙烯腈具有相同的质量。结果列于表1。所得聚合物具有非常好的质量,即其水溶性被列为“A”,计算其标准粘度为5.9cps(分子量约16,700,000)
对比实施例2重复实施例2的步骤,不同的是删除了对丙烯腈的纯化。结果列于表2中,如此得到的聚合物具有作为絮凝剂可接受的最低的质量,因为其水溶性被列为“B”,计算其标准粘度为5.6cps(分子量约15,300,000)。
其于实施例2和对比实施例2,现已发现,本发明使用低杂质含量的丙烯腈作为制备丙烯酰胺的原料,将生成具有极大改进了性能的聚丙烯酰胺。
实施例3进行类似于实施例1的方法,不同的是当纯化丙烯腈(LOT-1)时,改变纯化柱的顺序将“DiaionWA-20”作为第一个柱,“LevatitS-100”作为第二个柱,“CalgonCPG”作为第三个柱。结果列于表2。尽管在对比实施例1中由未纯化的丙烯腈得到的聚丙烯酰胺不具有任何工业上的价值,但本发明的应用会产生具有足以用作造纸试剂的品质的聚丙烯酰胺,这种品质是通过水溶性(“C”)和标准粘度(5.7cps)来证实的。
实施例4重复实施例3的步骤,只是用LOT-2代替LOT-1。结果列于表2中。所得聚丙烯酰胺与对比实施例2中得到的聚丙烯酰胺相比具有大大改进了的品质,这可通过其水溶性(“A”)和其标准粘度(5.8cps;分子量约16,200,000)得到证实。
实施例5进行类似于实施例1的方法,不同的是改变纯化柱的顺序,将“LevatitS-100”安排为第一个柱,“CalgonCPG”为第二个柱,“DiaionWA-20”为第三个柱。结果列于表2中,尽管在对比实施例1中由未纯化的丙烯腈得到的聚丙烯酰胺不具有任何工业上的价值,但本发明的应用会产生具有足以用作造纸试剂的品质的聚丙烯酰胺,这种品质是通过水溶性(“C”)和标准粘度(5.7cps)来证实的。
实施例6重复类似于实施例5的方法,不同的是用LOT-2作丙烯腈代替LOT-1,结果列于表2中。所得的聚丙烯酰胺与对比实施例2中得到的聚丙烯酰胺相比具有大大改进了的品质,这可通过其水溶性(“A”)和其标准粘度(5.8cps)得到证实。
实施例7进行类似于实施例1的方法,不同的是改变了纯化柱的顺序,安排“LevatitS-100”为第一个柱,“DiaionWA-20”为第二个柱,并且不使用活性炭。结果列于表2中,尽管在对比实施例1中由未纯化的丙烯腈得到的聚丙烯酰胺不具有任何工业上的价值,但本发明的应用会产生具有足以用作絮凝剂的品质的聚丙烯酰胺,这种品质是通过水溶性(“B”)和标准粘度(5.7cps)来证实的。
实施例8进行类似于实施例1的方法,不同的是改变纯化柱的顺序,安排“CalgonCPG”为第一个柱,“LevatitS-100”为第二个柱,“DiaionWA-20”为第三个柱。结果列于表2中。仅管在对比实施例1中由未纯化的丙烯腈得到的聚丙烯酰胺不具有任何工业上的价值,但本发明的应用会产生具有足以用作絮凝剂的品质的聚丙烯酰胺,这种品质是通过水溶性(“B”)和标准粘度(5.8cps)证实的。
实施例9进行类似于实施例2的方法,不同的是改变纯化柱的顺序,安排“LevatitS-100”为第一个柱,“CalgonCPG”为第二个柱,且不用“DiaionWA-20”。结果列于表2中。所得的聚丙烯酰胺与对比实施例2中得到的聚丙烯酰胺相比具有大大改进了的品质,这可通过其水溶性(“A”)和其标准粘度(5.8cps)得到证实。
实施例10进行类似于实施例7的方法,只是用“LevatitSP-112”作为第一个柱。结果列于表2中。尽管在对比实施例1中由未纯化的丙烯腈得到的聚丙烯酰胺不具有任何工业上的意义,本发明的应用会产生具有足以用作絮凝剂的品质的聚丙烯酰胺,这种品质是通过水溶性(“B”)和标准粘度(5.7cps)来证实的。
实施例11进行类似于实施例1的方法,不同的是用“LevatitSP-112”作为第一个柱。结果列于表2。尽管在对比实施例1中由未纯化的丙烯腈得到的聚丙烯酰胺不具有任何工业上的意义,本发明的应用会产生具有足以用作絮凝剂的品质的聚丙烯酰胺,这种品质是通过水溶性(“A”)和标准粘度(5.8cps)来证实的。
实施例12以类似的方式重复实施例1的方法,不同的是用“LevatitOC1059”(凝胶型)代替“DiaionWA-20”(多孔型),用“ShirasagiLHc”(椰子壳基活性炭)代替“CalgonCPG”(煤基活性炭)。结果列于表2中。这些结果与实施例1的结果可对比,这可由其水溶性(“A”)和其标准粘度(5.8cps)得到证实。
对比实施例3进行类似于实施例1的方法,不同的是使丙烯腈(LOT-1)只通过“LevatitS-100”。然而,由所得到的聚丙烯酰胺的水溶性(“D”)所示未观察到任何改进。
对比实施例4使低浓度杂质的丙烯腈(LOT-1)仅通过“S-100”滤过。按实施例1进行其他步骤。结果是,所得到的聚丙烯酰胺的水溶性被列为“C”。与未进行纯化处理的对比实施例2的结果比较,所得聚丙烯酰胺具有更差的质量。
对比实施例5-7进行类似于实施例1的方法,不同的是,分别使丙烯腈(LOT-1)单独通过“DiaionWA-20”(对比实施例5)、单独通过“CalgonCPG”(对比实施例6)或通过“DiaionWA-20”再通过“CalgonCPG”(对比实施例7)。然而未观察到任何改进。
对比实施例8-10进行类似于实施例1的方法,不同的是分别使丙烯腈(LOT-1)通过“DiationWA-20”再通过“LevatitS-100”(对比实施例8),通过“DiationWA-20”、“CalgonCPG”并最后通过“LevatitS-100”(对比实施例9),或通过“CalgonCPG”、“DiaionWA-20”并最后通过“LevatitS-100”(对比实施例10)。然而未观察到任何改进。
在表1中,星号具有下列意义*1浓度是通过气相色谱测定的。
*2使醛类与二硝基苯肼反应产生颜色并测定其吸光度来测定浓度。
*3使过氧化物与碘化钾反应并测定其吸光度来测定浓度。
*4各个分析的可检出低限是噁唑1.0,丙烯醛1.0,乙腈2.0,浓度均为ppm。
丙烯腈可用作通过催化水合制备丙烯酰胺的原料。然而丙烯腈不能得到具有优良质量的丙烯酰胺,除非它具有高品质并含有低含量的杂质。根据本发明的方法,甚至可以由具有一般质量的丙烯腈得到高品质的丙烯酰胺,这只是在催化水合之前通过进行简单的柱吸附处理来实现。这种丙烯酰胺可特别用作制备絮凝剂的原料。此外,将本发明应用于已经高度蒸馏和纯化并通常用于催化水合的丙烯腈,能够得到更高品质的丙烯酰胺。
权利要求
1.丙烯酰胺的制备方法,包括在至少两个步骤中处理丙烯腈,即使丙烯腈与强酸性阳离子交换树脂接触,然后与具有伯和/或仲氨基的树脂或与活性炭接触,之后在铜基催化剂存在下使所得丙烯腈经过水合反应。
2.根据权利要求1的方法,包括在至少两个步骤中处理丙烯腈,即使丙烯腈与强酸性阳离子交换树脂接触,然后与具有伯和/或仲氮基的树脂接触,之后在铜基催化剂存在下使所得丙烯腈经过水合反应。
3.根据权利要求1的方法,包括使丙烯腈与强酸性阳离子交换树脂接触,然后与活性炭接触,之后在铜基催化剂存在下使所得丙烯腈经过水合反应。
4.根据权利要求1的方法,其中丙烯腈已经通过丙烯的氨氧化制备。
5.根据权利要求2的方法,其中在使丙烯腈与具有伯和/或仲氮基的树脂接触后,再使丙烯腈与活性炭接触。
6.根据权利要求3的方法,其中在使丙烯腈与强酸性阳离子交换树脂接触之前,使丙烯腈与具有伯和/或仲氨基的树脂接触。
7.根据权利要求3的方法,其中在使丙烯腈与活性炭接触之后,使丙烯腈与具有伯和/或仲氨基的树脂接触。
全文摘要
本发明提供了丙烯酰胺的制备方法。将丙烯腈通过至少两个纯化步骤处理,其中使丙烯腈与强酸性阳离子交换树脂接触,然后与具有伯和/或仲氨基的树脂或与活性炭接触。在铜基催化剂存在下使所得到的丙烯腈经过水合反应。即使使用具有一般品质的丙烯腈,本发明方法也能够得到高品质的丙烯酰胺,并能制备适用于制备具有良好水溶性等的促凝剂的聚丙烯酰胺。
文档编号C07C231/06GK1106793SQ9410861
公开日1995年8月16日 申请日期1994年7月22日 优先权日1993年7月23日
发明者阿部刚也, 神原芳彦 申请人:三井东压化学株式会社