首页 > 金属材料 专利正文
一种Q235B钢/316不锈钢电渣重熔复合方法与流程

时间:2022-02-19 阅读: 作者:专利查询

一种q235b钢/316不锈钢电渣重熔复合方法
技术领域
1.本发明涉及金属基复合材技术领域,尤其是一种q235b钢/316不锈钢电渣重熔复合方法。


背景技术:

2.复合材料的研究与制备是近年来材料行业发展的一个重要趋势。随着科学技术的不断发展,每个行业对材料的综合性能要求日渐高涨,单一的材料已经无法满足高指标、高性能的要求。层状金属复合材料是利用复合技术使两种或两种以上物理、化学、力学性能不同的金属在界面上实现牢固的冶金结合而制备的一种新型材料。
3.尽管各层金属仍保持各自原有特性,但层状金属复合材料的物理、化学、力学性能比单一金属优越得多,得到的复合板所具有的综合性能是任一组元所无法具备的。
4.随着科技进步,如今它们不仅在应用范围上愈加广泛,而且在材料性能组合和优化利用方面也突破了传统的认识。导电性、导热性、耐腐蚀性和力学性能的有效组合,既使材料的综合性能得到提高,也为合理选材和降低成本提供了更好的条件。
5.双金属复合材料由于其特有的性能,越来越引起人们的重视,尤其是在航空、航天、国防、交通、电子和通讯等领域得到了广泛的应用。
6.不锈钢层合板是金属层合板中应用最为广泛的一种,它是将具有耐腐蚀、耐热、耐磨的不锈钢作为覆层,而采用强度相对较高、塑性韧性较好的碳钢或低合金钢作为基层,因此不锈钢层合板以其具有良好的成型加工性能、力学性能和耐腐蚀性能被广泛应用于工业生产中。不锈钢层合板根据覆层不锈钢材料的不同可分为奥氏体不锈钢层合板、铁素体不锈钢层合板、双相不锈钢层合板、马氏体不锈钢层合板等。其中奥氏体不锈钢层合板和铁素体不锈钢层合板由于具有良好的耐腐蚀性能和价格低廉而获得了广泛应用。


技术实现要素:

7.针对现有技术的不足,本发明提供一种q235b钢/316不锈钢电渣重熔复合方法,本发明制备的复合材料具有更优良的结合界面微观组织,具有高的界面强度。
8.本发明的技术方案为:一种q235b钢/316不锈钢电渣重熔复合方法,包括以下步骤:
9.s1)、将引弧电极卡好后,垂直入炉,调整中心,使端头距引弧剂30-70mm处口,待一切就绪后,调整好电流、电压,待指示仪表盘上电流开始波动后即可加渣;
10.s2)、电渣重熔q235b钢/316不锈钢时采质量百分比为70%的caf
2-质量百分比为30%的al2o3渣系,加渣时从四周均匀加入,避免一次加入量过多,避免冷渣过多造成溶渣凝固,透气性不好,导致喷渣、钻渣;
11.s3)、待溶渣升温时间达到后,立即将电极离开渣面,切断高压,抬起电极,移动台车换入自耗电极,根据熔炼要求迅速调整熔炼电流,在≤8分钟内逐渐转为正常熔炼电流,如果用自耗电极引弧造渣,待渣溶清后逐渐提高电流进行正常精炼;熔炼期间应经常观察
炉况,调整电极至中心位置,防止电极与铜制水冷结晶器打弧和其它意外事故的发生,到后期电极被融化掉≤100mm时电流逐渐递减至充填电流,进行充填补缩;
12.s4)、电渣重熔后直接进入加热炉,加热温度950-1100℃,保温1-3h,直接进入轧机进行轧制,轧制总压下量为45%-65%;可以热轧状态直接供货使用,成品在平整机组进行开平,精整,检验,入库。
13.作为优选的,所述的q235b钢的化学成分为:
14.c 0.16-0.20wt%,si 0.08-0.16wt%,mn 0.25-0.4wt%,p《0.015wt%,s《0.010wt%,其余为fe及不可避免的杂质。
15.作为优选的,所述的316不锈钢的化学成分为:
16.c 0.03-0.06wt%,si 0.50-0.80wt%,mn 1.2-1.8wt%,p≤0.015wt%,s≤0.010wt%,ni 10.0-14.0wt%,cr 16.0-18.5wt%,mo 2.0-3.0wt%,其余为fe及不可避免的杂质。
17.步骤s1)中,所述的引弧剂包括以下质量百分比的组分:
18.ti0
2 30-40%;
19.caf
2 60-70%。
20.作为优选的,在铜制水冷结晶器内盛有熔融的电渣,自耗电极一端插入熔渣内;自耗电极、渣池、金属熔池、钢锭、底水箱通过短网导线和变压器形成回路;在通电过程中,渣池放出焦耳热,将自耗电极端头逐渐熔化,熔融金属汇聚成金属液滴,穿过渣池,落入铜制水冷结晶器,形成金属熔池,受水冷作用,迅速凝固形成q235b钢锭,当钢锭厚度达到设定要求后,立即更换316不锈钢自耗电极;在电极端头液滴形成阶段,以及液滴穿过渣池滴落阶段,q235b钢渣、316不锈钢渣充分接触,q235b钢、316不锈钢中非金属夹杂物为炉渣所吸收。q235b钢、316不锈钢中有害元素(硫、铅、锑、钞、锡)通过q235b钢-渣、316不锈钢-渣反应和高温气化有效地去除。液态金属在渣池覆盖下,基本上避免了再氧化。因为是在铜制水冷结晶器内熔化、精炼、凝固的,这就杜绝了耐火材料对钢的污染。
21.作为优选的,q235b钢/316不锈钢-渣复合锭凝固前,在它的上端有金属熔池和渣池,起保温和补缩作用,保证q235b钢/316不锈钢复合锭的致密性。上升的渣池在铜制水冷结晶器内壁上形成一层薄渣壳。不仅使q235b钢/316不锈钢复合锭表面光洁,还起绝缘和隔热作用,使更多的热量向下部传导,有利于q235b钢/316不锈钢复合锭自下而上的定向结晶。由于以上原因,电渣重熔生产的q235b钢/316不锈钢锭的质量和性能得到改进,低温、室温和高温下的塑性和冲击韧性增强,钢材使用的寿命延长等。
22.作为优选的,引弧时选用高电压中电流

加助熔剂时电流有所波动

当助熔剂全部熔解时把中电流调整到高电流

电极熔解到剩余100-150mm时,封顶补缩

熔炼结束40分钟后抽锭或抬结晶器。
23.其中,所述的高电压为70-80v;所述的中电流为10000-12000a;所述的高电流为15000-16000a。
24.在冶炼过程中,主要要求热源稳定,步进速度平稳,电压等级越小,重熔锭的缩孔就越少,电压变化为5v一级为好;电流稳定,不然会在重熔锭的表面出现波纹;电极升降速率(弧长控制)平稳。
25.如果是多根电极熔炼一炉料,在自耗电极熔化至焊口还有大概100-150mm时,调整
电流使电流大于冶炼电流约300-700a,保持2-4分钟后,开始更换另外一金属自耗电极。更换电极的速度要快,以免在先前的钢锭面形成渣沟,造成q235b钢/316不锈钢结合面残渣夹杂物较多,在熔炼快结束时,由于金属冷却过程的自然收缩,会导致在金属熔池部位有一个深度不等的凹坑(缩孔)出现,为了消除这个对后续加工的影响,采取的一在熔炼过程中预补充的工艺,也就是补缩。
26.本发明的有益效果为:
27.1、本发明通过电渣重熔工艺生产出q235b钢/316不锈钢钢坯,通过热轧轧制到用户需要的目标厚度,可以不需要退火处理;
28.2、本发明的q235b钢/316不锈钢复合板界面剪切强度≥135mpa,抗拉强度≥345mpa,反复弯曲次数≥6次;
29.3、本发明通过将电渣重熔,加热、轧制联合在一起,减少了工艺流程,加快了生产节奏,易于实现大规模工业化生产,是一种具有非常好的发展潜力的q235b钢/316不锈钢金属层状复合材料制备加工技术,降低了生产成本,节约了社会资源。
具体实施方式
30.下面对本发明的具体实施方式作进一步说明:
31.实施例1
32.本实施例提供一种q235b钢/316不锈钢电渣重熔复合方法,其中,q235b化学成分:c为0.16wt%,si为0.15wt%,mn为0.25wt%,p为0.012wt%,s为0.008wt%,其余为fe及不可避免的杂质;
33.316不锈钢化学成分为:c为0.03wt%,si为0.80wt%,mn为1.8wt%,p为0.015wt%,s为0.005wt%,ni 10wt%,cr 16.0wt%,mo 2.0wt%,其余为fe及不可避免的杂质。
34.所述的方法包括以下步骤:
35.s1)、将引弧电极卡好后,垂直入炉,调整中心,使端头距引弧剂(32%ti02、68%的caf2)50mm处口待一切就绪后,调整好电流、电压,待指示仪表盘上电流开始波动后即可加渣;
36.s2)、电渣重熔时采70%caf
2-30%al2o3渣系(anf-6渣),加渣时一定要四周均匀加入,一次加入量不要过多,避免冷渣过多造成溶渣凝固,透气性不好,导致喷渣、钻渣。
37.s3)、待溶渣升温时间达到后,立即将电极离开渣面,切断高压,抬起电极,移动台车换入自耗电极,根据熔炼要求迅速调整熔炼电流,在6分钟内逐渐转为正常熔炼电流,如果用自耗电极引弧造渣,待渣溶清后逐渐提高电流进行正常精炼。
38.s4)、熔炼期间应经常观察炉况,调整电极至中心位置,防止电极与结晶器打弧和其它意外事故的发生,到后期电极被融化掉只剩90mm左右时电流逐渐递减至充填电流,进行充填补缩。
39.在铜制水冷结晶器内盛有熔融的电渣,自耗电极一端插入熔渣内。自耗电极、渣池、金属熔池、钢锭、底水箱通过短网导线和变压器形成回路。在通电过程中,渣池放出焦耳热,将自耗电极端头逐渐熔化,熔融金属汇聚成金属液滴,穿过渣池,落入结晶器,形成金属熔池,受水冷作用,迅速凝固形成q235b钢锭,当钢锭厚度达到设定要求后,立即更换316不
锈钢自耗电极。在电极端头液滴形成阶段,以及液滴穿过渣池滴落阶段,q235b钢渣、316不锈钢渣充分接触,q235b钢、316不锈钢中非金属夹杂物为炉渣所吸收。q235b钢、316不锈钢中有害元素(硫、铅、锑、钞、锡)通过q235b钢-渣、316不锈钢-渣反应和高温气化有效地去除。液态金属在渣池覆盖下,基本上避免了再氧化。因为是在铜制水冷结晶器内熔化、精炼、凝固的,这就杜绝了耐火材料对钢的污染。
40.q235b钢/316不锈钢-渣复合锭凝固前,在它的上端有金属熔池和渣池,起保温和补缩作用,保证q235b钢/316不锈钢复合锭的致密性。上升的渣池在结晶器内壁上形成一层薄渣壳。不仅使q235b钢/316不锈钢复合锭表面光洁,还起绝缘和隔热作用,使更多的热量向下部传导,有利于q235b钢/316不锈钢复合锭自下而上的定向结晶。由于以上原因,电渣重熔生产的q235b钢/316不锈钢锭的质量和性能得到改进,低温、室温和高温下的塑性和冲击韧性增强,钢材使用的寿命延长等。
41.引弧时选用高电压中电流

加助熔剂时电流有所波动

当助熔剂全部熔解时把中电流调整到高电流

电极熔解到剩余100mm时,封顶补缩

熔炼结束42分钟后抽锭或抬结晶器。在冶炼过程中,主要要求热源稳定,步进速度平稳,电压等级越小,重熔锭的缩孔就越少,电压变化为5v一级为好;电流稳定,不然会在重熔锭的表面出现波纹;电极升降速率(弧长控制)平稳。如果是多根电极熔炼一炉料,在自耗电极熔化至焊口还有大概100mm时调整电流旋钮,使电流稍大于冶炼电流约300a,保持2分钟后,开始更换另外一金属自耗电极。更换电极的速度要快,以免在先前的钢锭面形成渣沟,造成q235b钢/316不锈钢结合面残渣夹杂物较多,在熔炼快结束时,由于金属冷却过程的自然收缩,会导致在金属熔池部位有一个深度不等的凹坑(缩孔)出现,为了消除这个对后续加工的影响,采取的一在熔炼过程中预补充的工艺,也就是补缩。电渣重熔后直接进入加热炉,加热温度950℃,保温3h,进入轧机进行轧制,轧制总压下量为45%;可以热轧状态直接供货使用,成品在平整机组进行开平,精整,检验,入库。检测q235b钢/316不锈钢复合板界面剪切强度为155mpa,抗拉强度为385mpa,反复弯曲次数为8次。
42.实施例2
43.本实施例提供一种q235b钢/316不锈钢电渣重熔复合方法,其中,
44.q235b化学成分:c为0.18wt%,si为0.12wt%,mn为0.35wt%,p为0.012wt%,s为0.008wt%,其余为fe及不可避免的杂质;
45.316不锈钢化学成分:c为0.04wt%,si为0.70wt%,mn为1.6wt%,p为0.012wt%,s为0.005wt%,ni 10.5wt%,cr 16.0wt%,mo 2.1wt%,其余为fe及不可避免的杂质。
46.所述的方法包括以下步骤:
47.s1)、将引弧电极卡好后,垂直入炉,调整中心,使端头距引弧剂(35%ti02、65%的caf2)70mm处口待一切就绪后,调整好电流、电压,待指示仪表盘上电流开始波动后即可加渣;
48.s2)、电渣重熔时采70%caf
2-30%al2o3渣系(anf-6渣),加渣时一定要四周均匀加入,一次加入量不要过多,避免冷渣过多造成溶渣凝固,透气性不好,导致喷渣、钻渣。
49.s3)、待溶渣升温时间达到后,立即将电极离开渣面,切断高压,抬起电极,移动台车换入自耗电极,根据熔炼要求迅速调整熔炼电流,在6分钟内逐渐转为正常熔炼电流,如果用自耗电极引弧造渣,待渣溶清后逐渐提高电流进行正常精炼。熔炼期间应经常观察炉
况,调整电极至中心位置,防止电极与结晶器打弧和其它意外事故的发生,到后期电极被融化掉只剩85mm左右时电流逐渐递减至充填电流,进行充填补缩。
50.在铜制水冷结晶器内盛有熔融的电渣,自耗电极一端插入熔渣内。自耗电极、渣池、金属熔池、钢锭、底水箱通过短网导线和变压器形成回路。在通电过程中,渣池放出焦耳热,将自耗电极端头逐渐熔化,熔融金属汇聚成金属液滴,穿过渣池,落入结晶器,形成金属熔池,受水冷作用,迅速凝固形成q235b钢锭,当钢锭厚度达到设定要求后,立即更换316不锈钢自耗电极。在电极端头液滴形成阶段,以及液滴穿过渣池滴落阶段,q235b钢渣、316不锈钢渣充分接触,q235b钢、316不锈钢中非金属夹杂物为炉渣所吸收。q235b钢、316不锈钢中有害元素(硫、铅、锑、钞、锡)通过q235b钢-渣、316不锈钢-渣反应和高温气化有效地去除。液态金属在渣池覆盖下,基本上避免了再氧化。因为是在铜制水冷结晶器内熔化、精炼、凝固的,这就杜绝了耐火材料对钢的污染。
51.q235b钢/316不锈钢-渣复合锭凝固前,在它的上端有金属熔池和渣池,起保温和补缩作用,保证q235b钢/316不锈钢复合锭的致密性。上升的渣池在结晶器内壁上形成一层薄渣壳。不仅使q235b钢/316不锈钢复合锭表面光洁,还起绝缘和隔热作用,使更多的热量向下部传导,有利于q235b钢/316不锈钢复合锭自下而上的定向结晶。由于以上原因,电渣重熔生产的q235b钢/316不锈钢锭的质量和性能得到改进,低温、室温和高温下的塑性和冲击韧性增强,钢材使用的寿命延长等。
52.引弧时选用高电压中电流

加助熔剂时电流有所波动

当助熔剂全部熔解时把中电流调整到高电流

电极熔解到剩余120mm时,封顶补缩

熔炼结束41分钟后抽锭或抬结晶器。在冶炼过程中,主要要求热源稳定,步进速度平稳,电压等级越小,重熔锭的缩孔就越少,电压变化为5v一级为好;电流稳定,不然会在重熔锭的表面出现波纹;电极升降速率(弧长控制)平稳。如果是多根电极熔炼一炉料,在自耗电极熔化至焊口还有大概110mm时调整电流旋钮,使电流稍大于冶炼电流约400a,保持3分钟后,开始更换另外一金属自耗电极。更换电极的速度要快,以免在先前的钢锭面形成渣沟,造成q235b钢/316不锈钢结合面残渣夹杂物较多,在熔炼快结束时,由于金属冷却过程的自然收缩,会导致在金属熔池部位有一个深度不等的凹坑(缩孔)出现,为了消除这个对后续加工的影响,采取的一在熔炼过程中预补充的工艺,也就是补缩。电渣重熔后直接进入加热炉,加热温度1050℃,保温2h,进入轧机进行轧制,轧制总压下量为55%;可以热轧状态直接供货使用,成品在平整机组进行开平,精整,检验,入库。检测q235b钢/316不锈钢复合板界面剪切强度为145mpa,抗拉强度为395mpa,反复弯曲次数为9次。
53.实施例3
54.本实施例提供一种q235b钢/316不锈钢电渣重熔复合方法,其中,
55.q235b化学成分:c为0.16wt%,si为0.15wt%,mn为0.30wt%,p为0.012wt%,s为0.008wt%,其余为fe及不可避免的杂质;
56.316不锈钢化学成分:c为0.06wt%,si为0.70wt%,mn为1.6wt%,p为0.012wt%,s为0.005wt%,ni 10.0wt%,cr 17.0wt%,mo 2.0wt%,其余为fe及不可避免的杂质。
57.所述的生产方案是:
58.s1)、将引弧电极卡好后,垂直入炉,调整中心,使端头距引弧剂(32%ti02、68%的caf2)70mm处口待一切就绪后,调整好电流、电压,待指示仪表盘上电流开始波动后即可加
渣;
59.s2)、电渣重熔时采70%caf
2-30%al2o3渣系(anf-6渣),加渣时一定要四周均匀加入,一次加入量不要过多,避免冷渣过多造成溶渣凝固,透气性不好,导致喷渣、钻渣。
60.s3)、待溶渣升温时间达到后,立即将电极离开渣面,切断高压,抬起电极,移动台车换入自耗电极,根据熔炼要求迅速调整熔炼电流,在6分钟内逐渐转为正常熔炼电流,如果用自耗电极引弧造渣,待渣溶清后逐渐提高电流进行正常精炼。
61.s4)、熔炼期间应经常观察炉况,调整电极至中心位置,防止电极与结晶器打弧和其它意外事故的发生,到后期电极被融化掉只剩85mm左右时电流逐渐递减至充填电流,进行充填补缩。
62.在铜制水冷结晶器内盛有熔融的电渣,自耗电极一端插入熔渣内。自耗电极、渣池、金属熔池、钢锭、底水箱通过短网导线和变压器形成回路。在通电过程中,渣池放出焦耳热,将自耗电极端头逐渐熔化,熔融金属汇聚成金属液滴,穿过渣池,落入结晶器,形成金属熔池,受水冷作用,迅速凝固形成q235b钢锭,当钢锭厚度达到设定要求后,立即更换316不锈钢自耗电极。在电极端头液滴形成阶段,以及液滴穿过渣池滴落阶段,q235b钢渣、316不锈钢渣充分接触,q235b钢、316不锈钢中非金属夹杂物为炉渣所吸收。q235b钢、316不锈钢中有害元素(硫、铅、锑、钞、锡)通过q235b钢-渣、316不锈钢-渣反应和高温气化有效地去除。液态金属在渣池覆盖下,基本上避免了再氧化。因为是在铜制水冷结晶器内熔化、精炼、凝固的,这就杜绝了耐火材料对钢的污染。
63.q235b钢/316不锈钢-渣复合锭凝固前,在它的上端有金属熔池和渣池,起保温和补缩作用,保证q235b钢/316不锈钢复合锭的致密性。上升的渣池在结晶器内壁上形成一层薄渣壳。不仅使q235b钢/316不锈钢复合锭表面光洁,还起绝缘和隔热作用,使更多的热量向下部传导,有利于q235b钢/316不锈钢复合锭自下而上的定向结晶。由于以上原因,电渣重熔生产的q235b钢/316不锈钢锭的质量和性能得到改进,低温、室温和高温下的塑性和冲击韧性增强,钢材使用的寿命延长等。
64.引弧时选用高电压中电流

加助熔剂时电流有所波动

当助熔剂全部熔解时把中电流调整到高电流

电极熔解到剩余100mm时,封顶补缩

熔炼结束41分钟后抽锭或抬结晶器。在冶炼过程中,主要要求热源稳定,步进速度平稳,电压等级越小,重熔锭的缩孔就越少,电压变化为5v一级为好;电流稳定,不然会在重熔锭的表面出现波纹;电极升降速率(弧长控制)平稳。如果是多根电极熔炼一炉料,在自耗电极熔化至焊口还有大概110mm时调整电流旋钮,使电流稍大于冶炼电流约500a,保持3分钟后,开始更换另外一金属自耗电极。更换电极的速度要快,以免在先前的钢锭面形成渣沟,造成q235b钢/316不锈钢结合面残渣夹杂物较多,在熔炼快结束时,由于金属冷却过程的自然收缩,会导致在金属熔池部位有一个深度不等的凹坑(缩孔)出现,为了消除这个对后续加工的影响,采取的一在熔炼过程中预补充的工艺,也就是补缩。电渣重熔后直接进入加热炉,加热温度1100℃,保温1.5h,进入轧机进行轧制,轧制总压下量为65%;可以热轧状态直接供货使用,成品在平整机组进行开平,精整,检验,入库。检测q235b钢/316不锈钢复合板界面剪切强度为140mpa,抗拉强度为390mpa,反复弯曲次数为8次。
65.实施例4
66.本实施例提供一种q235b钢/316不锈钢电渣重熔复合方法,其中,
67.q235b化学成分:c为0.17wt%,si为0.12wt%,mn为0.25wt%,p为0.012wt%,s为0.008wt%,其余为fe及不可避免的杂质;
68.316不锈钢化学成分:c为0.06wt%,si为0.80wt%,mn为1.2wt%,p为0.012wt%,s为0.005wt%,ni 10.5wt%,cr 16.5wt%,mo 2.0wt%,其余为fe及不可避免的杂质。
69.所述的生产方案是:
70.s1)、将引弧电极卡好后,垂直入炉,调整中心,使端头距引弧剂(38%ti02、62%的caf2)30mm处口待一切就绪后,调整好电流、电压,待指示仪表盘上电流开始波动后即可加渣;
71.s2)、电渣重熔时采70%caf2-30%al2o3渣系(anf-6渣),加渣时一定要四周均匀加入,一次加入量不要过多,避免冷渣过多造成溶渣凝固,透气性不好,导致喷渣、钻渣。
72.s3)待溶渣升温时间达到后,立即将电极离开渣面,切断高压,抬起电极,移动台车换入自耗电极,根据熔炼要求迅速调整熔炼电流,在6分钟内逐渐转为正常熔炼电流,如果用自耗电极引弧造渣,待渣溶清后逐渐提高电流进行正常精炼。熔炼期间应经常观察炉况,调整电极至中心位置,防止电极与结晶器打弧和其它意外事故的发生,到后期电极被融化掉只剩95mm左右时电流逐渐递减至充填电流,进行充填补缩。
73.在铜制水冷结晶器内盛有熔融的电渣,自耗电极一端插入熔渣内。自耗电极、渣池、金属熔池、钢锭、底水箱通过短网导线和变压器形成回路。在通电过程中,渣池放出焦耳热,将自耗电极端头逐渐熔化,熔融金属汇聚成金属液滴,穿过渣池,落入结晶器,形成金属熔池,受水冷作用,迅速凝固形成q235b钢锭,当钢锭厚度达到设定要求后,立即更换316不锈钢自耗电极。在电极端头液滴形成阶段,以及液滴穿过渣池滴落阶段,q235b钢渣、316不锈钢渣充分接触,q235b钢、316不锈钢中非金属夹杂物为炉渣所吸收。q235b钢、316不锈钢中有害元素(硫、铅、锑、钞、锡)通过q235b钢-渣、316不锈钢-渣反应和高温气化有效地去除。液态金属在渣池覆盖下,基本上避免了再氧化。因为是在铜制水冷结晶器内熔化、精炼、凝固的,这就杜绝了耐火材料对钢的污染。
74.q235b钢/316不锈钢-渣复合锭凝固前,在它的上端有金属熔池和渣池,起保温和补缩作用,保证q235b钢/316不锈钢复合锭的致密性。上升的渣池在结晶器内壁上形成一层薄渣壳。不仅使q235b钢/316不锈钢复合锭表面光洁,还起绝缘和隔热作用,使更多的热量向下部传导,有利于q235b钢/316不锈钢复合锭自下而上的定向结晶。由于以上原因,电渣重熔生产的q235b钢/316不锈钢锭的质量和性能得到改进,低温、室温和高温下的塑性和冲击韧性增强,钢材使用的寿命延长等。
75.引弧时选用高电压中电流

加助熔剂时电流有所波动

当助熔剂全部熔解时把中电流调整到高电流

电极熔解到剩余150mm时,封顶补缩

熔炼结束41分钟后抽锭或抬结晶器。在冶炼过程中,主要要求热源稳定,步进速度平稳,电压等级越小,重熔锭的缩孔就越少,电压变化为5v一级为好;电流稳定,不然会在重熔锭的表面出现波纹;电极升降速率(弧长控制)平稳。如果是多根电极熔炼一炉料,在自耗电极熔化至焊口还有大概120mm时调整电流旋钮,使电流稍大于冶炼电流约500a,保持3分钟后,开始更换另外一金属自耗电极。更换电极的速度要快,以免在先前的钢锭面形成渣沟,造成q235b钢/316不锈钢结合面残渣夹杂物较多,在熔炼快结束时,由于金属冷却过程的自然收缩,会导致在金属熔池部位有一个深度不等的凹坑(缩孔)出现,为了消除这个对后续加工的影响,采取的一在熔炼过程中
预补充的工艺,也就是补缩。电渣重熔后直接进入加热炉,加热温度1100℃,保温1.5h,进入轧机进行轧制,轧制总压下量为60%;可以热轧状态直接供货使用,成品在平整机组进行开平,精整,检验,入库。检测q235b钢/316不锈钢复合板界面剪切强度为135mpa,抗拉强度为390mpa,反复弯曲次数为9次,
76.上述实施例和说明书中描述的只是说明本发明的原理和最佳实施例,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。