首页 > 乐器声学 专利正文
一种基于旋涡阵列的降噪方法与流程

时间:2022-02-17 阅读: 作者:专利查询

一种基于旋涡阵列的降噪方法与流程

1.本发明涉及飞行器噪声抑制技术领域,尤其是涉及一种基于旋涡阵列的降噪方法。


背景技术:

2.流体介质的非定常非均匀运动会产生气动噪声。气动噪声普遍存在于航空、航海以及地面交通等诸多领域。作为国家航空水平和综合国力的重要标志,目前我国arj21、c919以及cr929等大型民用飞机正处于量产或研发阶段,为了顺利取得适航许可证、进入国际国内市场,飞机噪声水平必须满足相关适航要求。军用飞机的气动噪声不仅引起结构疲劳,影响其突防能力,同时也给驾乘人员的精神状态带来巨大的负面影响,大大降低了包括声隐身在内的综合战斗性能。因此,高效抑制气动噪声对于国民经济和国防建设具有重要意义。
3.目前针对气动噪声主要的降噪途径有两种。一是抑制噪声源的强度,通过优化气动外形直接降低噪声源的发声效率,或者通过微射流注入或者锯齿等仿生结构改变声源附近的局部流场的流动特性进而达到降低气动噪声的目的。这种方法降噪针对性强,可以全局大幅度的降低气动噪声。但是在实际工程中要预先系统地了解噪声源的位置和噪声源附近的流动特性是很困难的,因此针对复杂工程问题的气动噪声降噪问题,多采用第二种途径,即控制噪声的传播路径,实现局部区域的最优降噪,实施过程中主要通过多孔介质、阻抗渐变材料等吸声结构和材料吸收声能以降低噪声。但是这种附带的吸声材料和结构大多是易燃有害物质,会对机载人员的健康安全造成隐患,而且会影响飞行器的整体气动特性。


技术实现要素:

4.为了解决现有技术中存在的技术问题,本发明提供一种基于旋涡阵列的降噪方法,直接采用旋涡发生器产生符合要求的旋涡阵列气流,用以降低例如发动机喷流的噪声。
5.一种基于旋涡阵列的降噪方法,其特征在于,采用旋涡阵列来进行降噪,所述旋涡阵列由气流产生。
6.进一步地,所述的旋涡阵列至少包括以下阵列中的一组:高频噪声降噪阵列,中频噪声降噪阵列,低频噪声降噪阵列。
7.进一步地,当存在两组及以上的旋涡阵列时,阵列与阵列之间交错排布。
8.进一步地,所述高频噪声降噪阵列包括三个旋涡a1,a2,a3,且为等边三角形布置,a1,a3逆时针旋转,a2顺时针旋转;所述中频噪声降噪阵列包括三个旋涡b1,b2,b3,且为等边三角形布置,b1,b3逆时针旋转,b2顺时针旋转;所述低频噪声降噪阵列包括三个旋涡c1,c2,c3,且为等边三角形布置,c1,c3逆时针旋转,c2顺时针旋转;
各旋涡的坐标分别为,,,,,,,,;其中r1为高频噪声降噪阵列中各旋涡的涡核半径;r2为中频噪声降噪阵列中各旋涡的涡核半径;r3为低频噪声降噪阵列中各旋涡的涡核半径。
9.一种基于旋涡阵列的降噪方法,包括以下步骤:s10. 获取噪声参数,分析噪声属性;所述噪声属性包括所述噪声为低频噪声、中频噪声、高频噪声中的一种或几种;s20. 根据噪声属性和/或降噪目标,选择对应的旋涡阵列;根据噪声属性,若所述噪声中含有低频噪声,则选择的噪声降噪阵列中包含低频噪声降噪阵列;若所述噪声中含有中频噪声,则选择的噪声降噪阵列中包含中频噪声降噪阵列;若所述噪声中含有高频噪声,则选择的噪声降噪阵列中包含高频噪声降噪阵列;所述降噪目标包括降低低频噪声、降低中频噪声和降低高频噪声中的至少一种;所述旋涡阵列由气流产生;s30.开启旋涡发生器产生相应的旋涡阵列。
10.进一步地,所述步骤s10中,还包括获取噪声的频率,得到低频噪声、中频噪声和高频噪声中各自占主导的频带的中心频率,依次记为f
l
、f
m
和f
h
,对应的波长分别为λ
l
、λ
m
和λ
h
,对应频带下的声能量谱密度为e
l
、e
m
和e
h

11.进一步地,所述旋涡阵列中,每个旋涡的分布为: ,其中,u,ρ,p分别为旋涡的速度,密度和强度;r为空间中任意一点到旋涡中心的距离;r为旋涡的涡核半径,m
v
为旋涡强度,γ为气体绝热指数,α为常数,v和p为多项式分布函数。
12.进一步地,所述低频噪声降噪阵列包括三个旋涡,,,a1,a3逆时针旋转,a2顺时针旋转,并且:, ;其中,r1为高频噪声降噪阵列中旋涡的涡核半径,m
v1
为高频噪声降噪阵列中旋涡的旋涡强度,π为圆周率。
13.进一步地,所述中频噪声降噪阵列包括三个旋涡,,,b1,b3逆时针旋转,b2顺时针旋转,并且:, ;其中,r2为低频噪声降噪阵列中旋涡的涡核半径,m
v2
为中频噪声降噪阵列中旋涡的旋涡强度,π为圆周率。
14.进一步地,所述高频噪声降噪阵列包括三个旋涡,,,c1,c3逆时针旋转,c2顺时针旋转,并且:, ;其中,r3为低频噪声降噪阵列中旋涡的涡核半径,m
v3
为低频噪声降噪阵列中旋涡的旋涡强度,π为圆周率。
15.采用本发明的基于旋涡阵列的降噪方法,相对于现有技术,至少具有以下有益效果:1. 本发明基于气流的旋涡阵列进行降噪,不需要实体的降噪装置,无需事先了解噪声源特性;2. 本发明的基于气流的旋涡阵列的参数可以根据采集到的噪声信号做适应性地调节,使用更加方便,适用范围更广,降噪效果也较好;3. 本发明的基于气流的旋涡阵列由于来源于空气等流体介质,环保无污染;4. 本发明提出采用气流产生涡流阵列进行降噪,为消音降噪领域提供了又一方向性的指引,为该领域的研究奠定了基础;5. 本发明还提出了采用等边三角形阵列进行降噪的优化的阵列排布形式,该排布结构的降噪效果最优。
附图说明
16.为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
17.图1是本发明实施例的旋涡阵列排布方式示意图。
具体实施方式
18.以下的说明提供了许多不同的实施例、或是例子,用来实施本发明的不同特征。以下特定例子所描述的元件和排列方式,仅用来精简的表达本发明,其仅作为例子,而并非用以限制本发明。
19.实施例1一种基于旋涡阵列的降噪方法,采用旋涡阵列来进行降噪,所述旋涡阵列由气流产生。本发明的降噪方法在需要降噪时通过气流产生旋涡阵列,起到现有技术中实物的降噪装置的降噪效果,而且相比现有降噪材料,旋涡阵列直接由空气产生,环保无污染,耐高温,更加适合飞行器在极端飞行条件下的降噪;最重要的是,气流形成的旋涡阵列,旋涡的各项参数可以根据实际噪声的情况进行调节,不需要像现有技术那样需要事先了解噪声的特性,适用范围更广。
20.本发明的旋涡阵列可以由旋涡发生器产生,产生旋涡的气流直接来源于空气,或其他流体介质,在此不作限定,本领域技术人员可以理解,其他能够产生旋涡阵列的装置也适用于本发明。
21.根据噪声的属性,本发明的旋涡阵列至少包括以下阵列中的一组:高频噪声降噪阵列,中频噪声降噪阵列,低频噪声降噪阵列。本领域技术人员可以理解,本实施例中所述的阵列,是指具有两个及两个以上的旋涡按照一定的规则进行排列。例如可以采用2个旋涡组成一个阵列,或3个旋涡组成一个阵列,或4个旋涡组成一个阵列,或更多个旋涡组成一个阵列,将高频噪声降噪阵列,中频噪声降噪阵列和低频噪声降噪阵列交错排列布置,均可以起到一定的降噪效果。
22.作为优选,采用3个旋涡组成一个阵列具有较好的降噪效果,如图1所示:所述高频噪声降噪阵列包括三个旋涡a1,a2,a3,且为等边三角形布置,a1,a3逆时针旋转,a2顺时针旋转;所述中频噪声降噪阵列包括三个旋涡b1,b2,b3,且为等边三角形布置,b1,b3逆时针旋转,b2顺时针旋转;所述低频噪声降噪阵列包括三个旋涡c1,c2,c3,且为等边三角形布置,c1,c3逆时针旋转,c2顺时针旋转;各旋涡的坐标分别为,,,,,,,,;其中r1为高频噪声降噪阵列中各旋涡的涡核半径;r2为中频噪声降噪阵列中各旋涡的涡核半径;r3为低频噪声降噪阵列中各旋涡的涡核半径。
23.实施例2一种基于旋涡阵列的降噪方法,包括以下步骤:s10. 获取噪声参数,分析噪声属性具体地址,本实施例中,获取噪声的时域信号,分析噪声的频谱特性。在噪声的传播路径上放置传声器采集噪声信号,其中,采集时间为60s,采样频率为102.4khz。对采集得到的噪声信号进行频率特性分析,本实施例中,分析采用分段平均的加窗的快速傅里叶变换方法,每个数据块长度为8192,将时域数据分为750段,窗函数为汉宁(hanning)窗。将时域上的信号转换为频域上的信号。对信号再进行三分之一倍频程分析,得到低频段(f<200hz),中频段(200hz≤f≤2000hz)和高频段(f>2000hz)上占据主导的频带的中心频率,
依次记为f
l
、f
m
和f
h
,对应的波长分别为λ
l
、λ
m
和λ
h
,对应频带下的声能量谱密度为e
l
、e
m
和e
h
;也可以得到所述噪声为低频噪声、中频噪声、高频噪声中的一种或几种;分析噪声为宽频噪声或单频噪声,其中宽频噪声为包含低、中、高频中任意两种或三种的噪声,单频噪声即只包含低、中、高频中的任意一种。
24.s20. 根据噪声属性和/或降噪目标,选择对应的旋涡阵列;根据噪声属性,若所述噪声中含有低频噪声,则选择的噪声降噪阵列中包含低频噪声降噪阵列;若所述噪声中含有中频噪声,则选择的噪声降噪阵列中包含中频噪声降噪阵列;若所述噪声中含有高频噪声,则选择的噪声降噪阵列中包含高频噪声降噪阵列;例如,若噪声为宽频噪声,低、中、高频噪声均有,那么需要同时选择高频噪声降噪阵列,中频噪声降噪阵列和低频噪声降噪阵列;若噪声为其中的任意两种噪声,那么选择对应的噪声降噪阵列即可;同理,若噪声为单频噪声,即只含有低、中、高频噪声中的一种,则只需选择对应的一种噪声降噪阵列即可。本领域技术人员知晓,一般情况下,宽频噪声中低中高频噪声均有,以上后两种情况属于极端情况,极少出现;更多情况下,是根据降噪目标来确定如何选择降噪阵列。
25.所述降噪目标包括降低低频噪声、降低中频噪声或降低高频噪声中的至少一种;也就是说,当只需要降低低、中、高频中的一种噪声时,则只设置对应的一种降噪阵列即可;当需要降低其中两种噪声时,设置对应两种降噪阵列;当需要低、中、高频噪声同时去除,则设置三种降噪阵列。
26.亦可以结合噪声和降噪目标一起来选择设置旋涡阵列:当噪声为宽频噪声,即低、中、高频噪声均有,降噪目标为降低低频噪声,则选择设置低频噪声降噪阵列;降噪目标为降低中频噪声,则选择设置中频噪声降噪阵列;降噪目标为降低高频噪声,则选择设置高频噪声降噪阵列;同理,降噪目标为降低其中的一种或两种,则对应地设置其中对应的一种或两种降噪阵列即可。
27.当噪声为单频噪声,降噪目标为降低低、中、高频所有噪声,则只需要设置噪声对应的频率的降噪阵列即可;若降噪目标为降低低、中、高频中的某一种噪声,且与噪声的主导频率相同,则设置对应的频率的降噪阵列即可,若不同,则无需产生旋涡阵列降噪。
28.其中,每个旋涡的分布为: ,其中,u,ρ,p分别为旋涡的速度,密度和强度;r为空间中任意一点到旋涡中心的距离;r为旋涡的涡核半径,m
v
为旋涡强度,γ为气体绝热指数,在空气中一般取1.4,α为常数,v和p为多项式分布函数。
29.高频噪声降噪阵列包括三个旋涡,,
,a1,a3逆时针旋转,a2顺时针旋转;a1,a2,a3呈等边三角形分布,a1,a2,a3位于等边三角形的顶点,并且:, ;本实施例中,本实施例中,a1为高频噪声降噪阵列的旋涡分布公式中的常数a的取值; v1和p1为高频噪声降噪阵列的旋涡分布公式中的多项式分布函数式, ;r1为高频噪声降噪阵列中旋涡的涡核半径,m
v1
为高频噪声降噪阵列中旋涡的旋涡强度。
30.中频噪声降噪阵列包括三个旋涡,,,b1,b3逆时针旋转,b2顺时针旋转,b1,b2,b3呈等边三角形分布,b1,b2,b3位于等边三角形的顶点,并且:, ;本实施例中,本实施例中,a2为中频噪声降噪阵列的旋涡分布公式中的常数a的取值;v2和p2为中频噪声降噪阵列的旋涡分布公式中的多项式分布函数式,;r2为中频噪声降噪阵列中旋涡的涡核半径,m
v2
为中频噪声降噪阵列中旋涡的旋涡强度。
31.低频噪声降噪阵列包括三个旋涡,,,c1,c3逆时针旋转,c2顺时针旋转,c1,c2,c3呈等边三角形分布,c1,c2,c3位于等边三角形的顶点,并且: , ;本实施例中,
本实施例中,a3为低频噪声降噪阵列的旋涡分布公式中的常数a的取值;v3和p3为低频噪声降噪阵列的旋涡分布公式中的多项式分布函数式,;r3为低频噪声降噪阵列中旋涡的涡核半径,m
v3
为低频噪声降噪阵列中旋涡的旋涡强度。
32.值得说明的是,本实施例中关于a的取值,p和v所选择的具体多项式表达只是一个示例,不是唯一能实现的方式,以上取值均可以由本领域技术人员根据可压缩非定常旋涡运动理论推导得出不同的取值和表达形式,在本发明中无法穷举。
33.s30.开启旋涡发生器产生相应的旋涡阵列。
34.采用旋涡发生器生产相应要求的旋涡阵列,将旋涡阵列设置于声传播的路径上,作为优选,声传播方向与x轴正方向一致,可有效降低噪声。
35.图1为本发明实施例的旋涡阵列排布方式图,图中含有高频噪声降噪阵列a1,a2,a3,中频噪声降噪阵列b1,b2,b3,低频噪声降噪阵列c1,c2,c3,该旋涡阵列可以取得7.5db的降噪效果;当然,根据噪声属性和降噪目标,对单频噪声降噪,可取得10db的降噪效果。
36.采用本发明的气流旋涡阵列进行降噪,可以获得较好的降噪效果,能够替代现有技术中采用实体降噪装置进行降噪,具有非常大的实用价值。
37.以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。