首页 > 摄影电影 专利正文
成像模组和头戴显示设备的制作方法

时间:2022-02-18 阅读: 作者:专利查询

成像模组和头戴显示设备的制作方法
成像模组和头戴显示设备
1.本发明要求2021年6月29日申请的、申请号为202110739944.0、名称为“成像模组和头戴显示设备”的中国专利申请的优先权,其全部内容通过引用结合在本发明中。
技术领域
2.本发明涉及光学显示技术领域,尤其涉及一种成像模组和头戴显示设备。


背景技术:

3.在头戴显示设备(head mount display)中为了减少整个设备的体积,通常在头戴显示设备的内部设计折反射光路,使光线在有限的空间内多次往返传递。为保证光线能够顺利折反射,需要光线转化为统一的偏振状态。但是显示屏幕的光线在经过一些光学器件时,光线的入射角度会发生变化,而不同的入射角度会导致光线转化为不同偏振状态,这些与统一偏振状态不同的光线形成杂散光,杂散光会影响成像清晰度。


技术实现要素:

4.基于此,针对现有不同入射角度的光线会形成杂散光,杂散光会导致成像清晰度降低的问题,有必要提供一种成像模组和头戴显示设备,旨在能够减少杂散光的产生,保证用户获得清晰的成像画面。
5.为实现上述目的,本发明提出一种成像模组,所述成像模组包括:
6.显示屏幕,所述显示屏幕用于出射光线;
7.成像透镜,所述成像透镜设于所述显示屏幕的出光方向;以及
8.位相延迟校正器,所述位相延迟校正器设于所述显示屏幕或设于所述成像透镜,所述位相延迟校正器的位相延迟非旋转对称分布。
9.可选地,所述位相延迟校正器包括位相增加轴和位相减少轴,所述位相增加轴和所述位相减少轴呈夹角设置。
10.可选地,所述位相增加轴增加位相延迟的最大方向和所述位相减少轴减少位相延迟的最大方向正交。
11.可选地,所述位相延迟校正器还包括延迟角度为零度的第一轴和第二轴,所述第一轴位于所述位相增加轴和所述位相减少轴之间,所述第二轴位于所述位相增加轴和所述位相减少轴之间,所述第一轴和所述第二轴呈夹角设置。
12.可选地,所述位相延迟校正器设于所述成像透镜的入光面,所述成像模组还包括:
13.第一位相延迟器,所述第一位相延迟器设于所述位相延迟校正器背离所述成像透镜的一侧;以及
14.线偏器,所述线偏器设于所述第一位相延迟器背离所述成像透镜的一侧。
15.可选地,所述成像模组还包括:
16.分光件,所述分光件设于所述位相延迟校正器和所述成像透镜之间;
17.第二位相延迟器,所述第二位相延迟器设于所述分光件和所述成像透镜之间;以

18.偏振反射器,所述偏振反射器设于所述成像透镜的出光面,所述线偏器的透过轴与所述偏振反射器的透过轴正交。
19.可选地,所述第一位相延迟器和所述第二位相延迟器均为四分之一波片。
20.可选地,所述成像模组还包括第三位相延迟器,所述第三位相延迟器设于所述线偏器和所述显示屏幕之间。
21.可选地,所述成像模组还包括正透镜,所述正透镜设于所述成像透镜背离所述显示屏幕的一侧;
22.定义垂直于所述成像模组的光轴方向为高度方向,所述成像透镜的高度为d1,所述正透镜的高度为d2,则满足:d2<d1。
23.此外,为了解决上述问题,本发明还提供一种头戴显示设备,所述头戴显示设备包括壳体和如上文所述成像模组,所述成像模组设于所述壳体。
24.本发明提出的技术方案中,显示屏幕发射光线,光线射向成像透镜。成像模组具有光轴,光线围绕成像模组的光轴入射角度会出现不同的变化。不同的入射角度会形成不同的偏振状态,光线在经过位相延迟校正器后,对产生变化的入射角度进行补偿。为了满足不同的入射角度的光线均能够得到位相补偿,将位相延迟校正器的位相延迟非旋转对称分布设置,如此,对于位相延迟的增加或者位相延迟的减少的方向,位相延迟校正器均能够在对应位置进行位相补偿。位相补偿后的光线出射后形成统一的偏振状态,从而减少杂散光的产生,保证用户获得清晰的成像画面。
附图说明
25.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
26.图1为本发明成像模组一实施例的结构示意图;
27.图2为图1中成像透镜的部分位置的结构示意图;
28.图3为图1中成像透镜和正透镜的高度示意图;
29.图4为图1中位相延迟校正器在相位补偿分布示意图;
30.图5为图1中成像模组在450nm下的调制传递函数图;
31.图6为图1中成像模组在540nm下的调制传递函数图;
32.图7为图1中成像模组在610nm下的调制传递函数图。
33.附图标号说明:
34.标号名称标号名称10显示屏幕50线偏器101人眼60分光件110光线70第二位相延迟器20成像透镜80偏振反射器30位相延迟校正器90第三位相延迟器
40第一位相延迟器04正透镜
35.本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
36.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
37.需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后
……
)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
38.另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
39.在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
40.另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
41.在相关技术中,头戴显示设备能够为用户提供虚拟体验,目前的头戴显示设备的体积较大,为了减少头戴显示设备的体积,在头戴显示设备的内部设计折反射光路,使光线在有限的空间内多次往返传递。同时为保证光线能够顺利折反射,需要光线转化为统一的偏振状态。但是显示屏幕的光线在经过一些光学器件时,光线的入射角度会发生变化,尤其是在经过一些偏振转换器件时,不同的入射角度会导致光线转化为不同偏振状态,这些与统一偏振状态不同的光线形成杂散光,杂散光会影响成像清晰度。
42.为了解决上述问题,参阅图1和图2所示,本发明提供一种成像模组,成像模组包括:显示屏幕10、成像透镜20以及位相延迟校正器30。显示屏幕10用于出射光线110,成像透镜20设于显示屏幕10的出光方向,位相延迟校正器30可以设置在显示屏幕10上,也可以设置在成像透镜20上。
43.其中,显示屏幕10的发光原理包括有多种。例如,显示屏幕10的原理包括lcd(liquid crystal display)液晶显示器,或者是led(lightemitting diode)发光二极管,oled(organic light-emitting diode)有机发光二极管,micro-oled(micro-organic light-emitting diode)微型有机发光二极管、uled(ultra light emitting diode)极致发光二极管,或者dmd(digital micromirror device)数字微镜芯片等。
44.成像透镜20设于显示屏幕10的出光方向;成像透镜20的作用在于放大解析光线
110,显示屏幕10的出光面面积较小,例如在vr(virtual reality,虚拟现实)显示设备或者ar(augmented reality,增强现实)显示设备中,显示屏幕10的尺寸只有几英寸。为了保证用户获得放大后的显示画面,光线110需要经过放大,通过成像透镜20保证用户获得能够识别的清晰画面。其中,成像透镜20可以是单片镜片,也可以是多个镜片的组合。
45.位相延迟校正器30设于显示屏幕10或设于成像透镜20。其中,显示屏幕10具有光线110出射的出光面,位相延迟校正器30可以设于显示屏幕10的出光面。成像透镜20具有光线110入射的入光面和光线110出射的出光面,位相延迟校正器30可以设置在成像透镜20的入光面,也可以设置在成像透镜20的出光面。并且,在成像透镜20有多个镜片组合的情况下,位相延迟校正器30还可以设置在多个镜片之间。
46.位相延迟校正器30的位相延迟非旋转对称分布。具体来说,光线110的不同射入角度可能导致光线110的位相延迟不同,或者理解为,不同的入射角度导致光线110的位相延迟可能增加也可能减少,或者在不同的方向上位相延迟增加和位相延迟的减少同时存在。光线110在经过位相延迟校正器时,位相的增加或者减少得以补偿校正。进一步的就是,位相延迟增加的光线110在经过位相延迟校正器后,位相延迟得以减少,位相延迟减少的光线110在经过位相延迟校正器后,位相延迟得以增加。需要指出的是位相延迟校正器的位相延迟的非旋转对称分布可以通过改变位相延迟校正器30的厚度来实现,比如在相位延迟增加的位置减少厚度,在相位延迟减少的位置提高厚度。举例说明,光线110在射向位相延迟校正器30时,在位相延迟器的入光面形成o光和e光,o光的前进速度快,e光的前进速度慢,通过改变厚度,e光达到位相延迟器的出光面的时间不同,从而改变位相延迟。除此之外,还可以改变位相延迟校正器30不同位置处材料的折射率,使之产生相对o光和e光的折射率差,根据折射率差的大小来调整位相延迟。在需要增加位相延迟的位置提高折射率差,从而使e光达到的速度变慢,延长e光达到出光面的时间,继而提高位相延迟。在需要减少位相延迟的位置提高折射率差,从而使e光达到的速度变慢,缩短e光达到出光面的时间,继而提高位相延迟,从而改变位相延迟。在通过改变不同位置的厚度或者不同位置的材料折射率来完成位相延迟校正器非旋转对称分布。当然也可以是厚度和材料折射率结合起来完成位相延迟校正器非旋转对称分布。
47.本实施例提出的技术方案中,显示屏幕10发射光线110,光线110射向成像透镜20。成像模组具有光轴,光线110围绕成像模组的光轴入射角度会出现不同的变化。不同的入射角度会形成不同的偏振状态,光线110在经过位相延迟校正器后,对产生变化的入射角度进行补偿。为了满足不同的入射角度的光线110均能够得到位相补偿,将位相延迟校正器的位相延迟非旋转对称分布设置,如此,对于位相延迟的增加或者位相延迟的减少的方向,位相延迟校正器均能够在对应位置进行位相补偿。位相补偿后的光线110出射后形成统一的偏振状态,从而减少杂散光的产生,保证用户获得清晰的成像画面。
48.参阅图4所示,在上述实施例中,以成像模组的光轴为对称轴,位相延迟校正器30的表面360
°
上可以形成一个位相延迟补偿的增减的示意图。x轴是横轴,y轴是纵轴,对两个方向上的距离进行归一化处理,并且对位相延迟进行归一化处理。入射角度的变化由正到负,角度由大到小的变化,可知位相延迟的增加具有一个最大的方向,位相延迟的减少具有一个最大的方向,两者之间的位置是位相延迟的增加到位相延迟的减少逐渐变化的。为了补偿在位相延迟增加的最大位置和在位相延迟减少的最大位置的位相,位相延迟校正器包
括位相增加轴和位相减少轴,位相增加轴对应位相延迟需要减少的位置,位相减少轴对应位相延迟需要增加的位置。
49.进一步地,参阅图2可知,位相延迟补偿器的位相增加轴和位相减少轴交叉,并且在位相增加轴增加位相延迟的最大方向和位相减少轴减少位相延迟的最大方向正交。正交的交叉点位于光轴位置,正交说明夹角为90度,位相延迟的增加方向到位相延迟的减少方向形成的角度以及位相延迟的减少方向到位相延迟的增加方向形成的角度相同。
50.进一步地,光线110有时的入射角度是不发生变化的,在这个位置不需要对光线110的位相延迟进行补偿。位相延迟校正器还包括延迟角度为零度的第一轴和第二轴,第一轴位于位相增加轴和位相减少轴之间,第二轴位于位相增加轴和位相减少轴之间,第一轴和第二轴呈夹角设置。举例说明,第一轴和第二轴夹角为90
°
,第一轴水平延伸,第二轴竖直延伸。当然,在成像模组转动后,第一轴和第二轴也同步转动。需要指出的是,有些规格的成像模组,位相的增加或者减少并非严格的是由大到小逐渐变化的,有时变化可能过快,也可能过慢,如此,第一轴和第二轴的夹角就会在90
°
左右出现偏移,两者之间的夹角可能小于90
°
,还可能大于90
°

51.在本技术的一实施例中,位相延迟校正器30设于成像透镜20的入光面,成像模组还包括:第一位相延迟器40和线偏器50。显示屏幕10发出的光线110可能具有多种偏振状态,圆偏振光、椭圆偏振光或者线偏振光,还可以是三者其中一种或两种光线110的组合,还可以是自然光。这些光线110在经过线偏器50后,都转化为偏振方向相同的线偏振光,光线110的偏振状态统一,也便于接下来完成光线110的折反射。线偏器50在于经过的光线110转化为线偏振光,第一位相延迟器40用于将经过的线偏振光转化为圆偏振光或是椭圆偏振光,还可以是用于将经过的圆偏振光或是椭圆偏振光转化为线偏振光。第一位相延迟器40设于位相延迟校正器30背离成像透镜20的一侧;线偏器50设于第一位相延迟器40背离成像透镜20的一侧。显示屏幕10发出的光线110依次经过线偏振器、第一位相延迟器40,由于显示屏幕10发射的光线110经过传播后,在射向线偏振器和第一位相延迟器40时入射角度已经发生了变化,位相延迟校正器30就可以补充这种变化。其中,第一位相延迟器40具有快轴和慢轴,在快轴方向位相延迟增加了,在慢轴方向位相延迟减少了。为了补偿相位延迟,位相增加轴对应第一位相延迟器40的慢轴设置,位相减少轴对应第一位相延迟器40的快轴设置。除此之外,由于第一位相延迟器40设置在线偏器50和成像透镜20之间,第一位相延迟器40的光学面避免了与空气的接触,减少经过的光学介质,从而减少光线110的反射。进一步可知,线偏器50设置在第一位相延迟器40背向成像透镜20的表面。光线110在遇到线偏器50反射时,反射的方向也是朝向远离人眼101的方向。同样可知的是,光线110在由显示屏幕10射向第一位相延迟器40时,即使在第一位相延迟器40的表面有反射,反射的方向同样是朝向远离人眼101的方向。由此可知,在第一位相延迟器40避免与空气接触减少反射的情况下,反射的方向还是朝向远离人眼101的方向,进一步的减少反射光线110射入人眼101,即减少杂散光,保证用户获得清晰的显示画面。
52.进一步地,为了有效减少成像模组的体积,光线110在成像模组内部折反射。为此,成像模组还包括:分光件60、第二位相延迟器70和偏振反射器80。分光件60设于位相延迟校正器30和成像透镜20之间;第二位相延迟器70设于分光件60和成像透镜20之间;偏振反射器80设于成像透镜20的出光面,线偏器50的透过轴与偏振反射器80的透过轴正交。光线110
在经过分光件60时部分光线110反射,另一部分光线110透射,反射和透射比可以是1:1,也可以是2:1,还以是1:2等,例如,分光件60可以为半反半透膜。分光件60可以通过光学胶粘贴在第二位相延迟器70和位相延迟校正器30之间。也可以采用镀膜的方式,将分光件60镀在第二位相延迟器70的表面或是镀在位相延迟校正器30的表面。第二位相延迟器70设于分光件60和成像透镜20之间,第二位相延迟器70的光轴与线偏器50的透过轴之间夹角为45
°
,可以正45
°
也可以是负45
°
;第二位相延迟器70也为膜层结构,第二位相延迟器70可以通过光学胶粘贴在分光件60和成像透镜20之间。也可以采用镀膜的方式,将分光件60镀在第二位相延迟器70的表面或是镀在位相延迟校正器30的表面。
53.偏振反射器80设于成像透镜20的出光面,线偏器50的透过轴与偏振反射器80的透过轴正交。同样地,偏振反射器80也可以为膜层结构,偏振反射器80可以通过光学胶粘贴在成像透镜20上。也可以采用镀膜的方式,将分光件60镀在成像透镜20的表面。另外,线偏器50的透过轴与偏振反射器80的透过轴正交能够保证光线110在成像模组内部折反射。具体的是,显示屏幕10发射光线110,发射的光线110依次经过线偏器50和第一位相延迟器40后,光线110的偏振状态为圆偏振光,并且通过位相延迟校正器30的校正后,光线110在射向分光件60。光线110经过分光件60,一部光线110透射,另一部分光线110反射。透射分光件60的光线110继续传播,并经过射向第二位相延迟器70,圆偏振光线110的偏振状态发生改变,圆偏振光变换为线偏振光。线偏振的光线110透射成像透镜20,射向偏振反射器80。此时,线偏振光的振动方向与偏振反射器80的透过轴方向不同,光线110被反射。反射的光线110依次经过成像透镜20、第二位相延迟器70,并再次射向分光件60。光线110再次经过分光件60时,光线110被部分反射向第二位相延迟器70。此时,光线110转化为圆偏振光,经过反射后,光线110的旋转方向发生了改变,光线110再次经过第二位相延迟器70后再次转换为线偏振光。此时,线偏振光的偏振方向与偏振反射器80的透射轴方向相同,在这个过程中,光路直径不断的放大。通过光线110的多次折反射,在有限的空间内实现了图像的放大传递,有利的减少了成像模组的体积。
54.进一步地,为了有效的将光线110在圆偏振和线偏振之间切换,第一位相延迟器40和第二位相延迟器70均为四分之一波片。光线110在经过四分之一波片后,线偏振光转化为圆偏振光,圆偏振光转化为线偏振光。另外,四分之一波片为膜层结构,便于成像模组减少体积。此外,四分之一波片可以通过光学胶采用粘贴的贴附,也可以采用镀膜的方式。
55.为了进一步的减少杂散光,在本技术的一实施例中,显示屏幕10发射出的光线110在遇到线偏器50后,除了透射于线偏器50的光线110外,还有一部分光线110被反射,这部分光线110在射向显示屏幕10后会再次反射,容易产生影响显示屏幕10的杂散光。为了进一步的减少杂散光,成像模组还包括第三位相延迟器90,第三位相延迟器90设于线偏器50和显示屏幕10之间,第三相位延迟器的光轴与线偏器50的透过轴之间夹角为45
°
。其中,第三位相延迟器90也可以为四分之一波片。线偏器50反射的光线110在经过第三位相延迟器90,转化为圆偏振光,经过显示屏幕10的反射后,圆偏振光的旋转方向发生了改变,左旋变右旋,或者是右旋变成左旋。光线110再次经过第三相位延迟器后,圆偏振光转化为线偏振光,且线偏振光的偏振方向与线偏器50的透过轴垂直,光线110无法穿过线偏器50,从而减少杂散光的产生。
56.参阅图3所示,为了减少成像模组的体积,成像模组还包括正透镜04,正透镜04设
于成像透镜20背离显示屏幕10的一侧;正透镜04具有正光焦度,光线110经过正透镜04后会聚,从而在人眼101位置射出。定义垂直于成像模组的光轴方向为高度方向,成像透镜20的高度为d1,正透镜04的高度为d2,则满足:d2<d1。由此可知的是,正透镜04的有效高度尺寸小于成像透镜20的有效高度尺寸。如此,光线110在射向正透镜04时需要向成像模组的光轴方向大角度弯曲。且由于正透镜04的光焦度为正,光线110会聚的位置距离成像模组更近,如此,成像的位置更近。成像模组的整体体积更加小巧,也便于用户使用。
57.在上述实施例中,成像透镜20的设置位置至少有两种情况,第一种情况是成像透镜20设于显示屏幕10的出光面。这样,光线110在经过显示屏幕10射出后直接进入到成像透镜20,光线110避免在大气中传播,如此减少光线110经过的光学介质,进而减少光线110的反射,减少光线110被光学介质的吸收。
58.除此之外,第二种情况是成像透镜20与显示屏幕10间隔设置。如此,能够扩大光线110的传播距离,增加光程,使光线110拥有充分的折反射路径,进而使光线110充分放大解析成像。
59.进一步地,成像透镜20的设置类型也具有多种,具体包括成像透镜20为平凸透镜、凹凸透镜或者双凸透镜的其中一种。成像透镜20为平凸透镜时,成像透镜20的入光面为平面,成像透镜20的出光面为凸起面。成像透镜20为凹凸透镜时,凹凸透镜可以是弯月透镜,成像透镜20的入光面为凹面,成像透镜20的出光面为凸起面。成像透镜20为双凸透镜时,成像透镜20的入光面和成像透镜20的出光面均为凸起面。通过成像透镜20的出光面凸起设置,光线110有效的向人眼101位置偏折。
60.本发明还提供一种头戴显示设备,头戴显示设备包括壳体和如上文成像模组,成像模组设于壳体。壳体能够提供一个支撑成像模组的安装空间,成像模组设置在壳体内,如此能够避免外部环境的水汽或者灰尘落入到成像模组的内部。
61.本发明的头戴显示器的实施方式可以参照上述成像模组各实施例,在此不再赘述。
62.表一列出了成像模组中一实施例的具体参数,并给出了计算光学表面对应系数。
63.表一
[0064][0065]
另外,针对上述实施例,图5、图6、图7分别为450nm、540nm、610nm下本实施例中成像模组的调制传递函数mtf(modulation transfer function)曲线图,mtf图是指调制度与图像内每毫米线对数之间的关系,用于评价对景物细部还原能力。从图中可以看出在空间频率每毫米线对数50下,540nm波长下,成像模组mtf值高于0.7,450nm和610nm波长下,成像模组mtf高于0.35。在主要视场角范围内,mtf值大于0.7,分辨率良好。
[0066]
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。