首页 > 医药医疗 专利正文
基于单路脉搏波的血压监测装置、存储介质及电子设备的制作方法

时间:2022-02-20 阅读: 作者:专利查询

基于单路脉搏波的血压监测装置、存储介质及电子设备的制作方法

1.本发明属于血压检测装置技术领域,尤其涉及一种基于单路脉搏波的血压监测装置、存储介质及电子设备。


背景技术:

2.本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。
3.人体血压时刻处于动态变化中,血压的连续监测是高效查看高血压患者健康状态的措施之一,连续血压监测可以及时捕捉血压的异常波动变化,提前预警用户脑梗、心梗等突发性心血管疾病的可能威胁。
4.根据血压计算方式的不同,检测设备需要采集的信号种类也不同,目前运用较多的有基于示波法计算血压,基于心电信号和脉搏波信号计算血压,基于双路脉搏波信号计算血压,基于单路脉搏波测量血压。其中基于示波法计算血压的方式需要周期性的充气和放气,用户体验较差,而且测量间隔较长,无法实现真正的血压连续检测。基于心电信号和脉搏波信号配合获取血压以及基于双路脉搏波获取血压的方法对于两种信号的配合要求严格,操作过程复杂、实现困难。而且双路更信号容易受噪声干扰,造成计算结果精度差。
5.基于单路脉搏波监测血压操作过程简单,测量设备体积更小而且便于携带,是一种用户体验较好的血压连续检测方案。但是现有的基于单路脉搏波波形形态分析来计算得到的血压误差较大,无法满足临床需求。误差主要来自于三个方面:一是脉搏波信号在采集过程中容易受个体化差异的影响导致信号质量参差不齐,而且包含了个体化差异的信号会掩盖了脉搏波波形特征与血压的内在联系。二是脉搏波信号的连续测量环境多变,受噪声干扰的程度不一,现有的滤波方法很难动态适应不同噪声干扰程度下的信号滤波,经常出现信号细节被滤除或者噪声滤除不彻底的情况,为后续脉搏波的形态分析和特征提取带来极大困难。三是血压计算模型虽然能够反应用户的血压变化趋势,但是不同用户的血压基准并不相同,所以想要获得更高精度的血压,需要进行血压校准。
6.综上所述,发明人发现,基于单路脉搏波进行检测血压时仍然存在信号采集过程、信号处理过程和计算模型这三个方面的误差,从而导致血压检测的精度差。


技术实现要素:

7.为了解决上述背景技术中存在的技术问题,本发明提供一种基于单路脉搏波的血压监测装置、存储介质及电子设备,其能够从信号采集过程、信号处理过程和计算模型这三个方面来降低血压检测误差,从而提高血压检测结果的准确性。
8.为了实现上述目的,本发明采用如下技术方案:
9.本发明的第一个方面提供了一种基于单路脉搏波的血压监测装置,其包括:
10.信号采集模块,其用于采集消除个体化差异之后的单路脉搏波信号;
11.信号滤波模块,其用于对单路脉搏波信号进行滤波;
12.血压计算及校准模块,其用于提取滤波后的单路脉搏波信号的特征参数,并基于提取的特征参数及校准后的血压计算模型,得到血压检测值;
13.其中在所述血压计算及校准模块,血压计算模型的校准过程为:
14.基于参考血压值及提取的特征参数,计算得到一组校准系数;其中,校准系数的计算模型为参考血压值及提取的特征参数的设定多项式函数;
15.将校准系数作为已知初始血压计算模型的设定项的系数和指数,来校准血压计算模型,得到校准后的血压计算模型。
16.在一个或多个实施例中,在所述信号滤波模块中,在静息状态或者运动幅度小于设定阈值的情境下,采用变窗长的滑动滤波算法对单路脉搏波信号滤波。
17.在一个或多个实施例中,在所述信号滤波模块中,在运动幅度大于设定阈值的情境下,采用预设分布的光电传感器来识别手腕运动方式,再采用与手腕运动方式相匹配的光电补偿策略对消除个体化差异之后的单路脉搏波信号进行光电补偿,最后依次通过经验模态的分解与重构及变窗长的滑动滤波算法对光电补偿后的单路脉搏波信号进行滤波。
18.本发明的第二个方面提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如下步骤:
19.采集消除个体化差异之后的单路脉搏波信号;
20.对单路脉搏波信号进行滤波;
21.提取滤波后的单路脉搏波信号的特征参数,并基于提取的特征参数及校准后的血压计算模型,得到血压检测值;
22.其中血压计算模型的校准过程为:
23.基于参考血压值及提取的特征参数,计算得到一组校准系数;其中,校准系数的计算模型为参考血压值及提取的特征参数的设定多项式函数;
24.将校准系数作为已知初始血压计算模型的设定项的系数和指数,来校准血压计算模型,得到校准后的血压计算模型。
25.在一个或多个实施例中,在静息状态或者运动幅度小于设定阈值的情境下,采用变窗长的滑动滤波算法对单路脉搏波信号滤波。
26.在一个或多个实施例中,在运动幅度大于设定阈值的情境下,采用预设分布的光电传感器来识别手腕运动方式,再采用与手腕运动方式相匹配的光电补偿策略对消除个体化差异之后的单路脉搏波信号进行光电补偿,最后依次通过经验模态的分解与重构及变窗长的滑动滤波算法对光电补偿后的单路脉搏波信号进行滤波。
27.本发明的第三个方面提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如下步骤:
28.采集消除个体化差异之后的单路脉搏波信号;
29.对单路脉搏波信号进行滤波;
30.提取滤波后的单路脉搏波信号的特征参数,并基于提取的特征参数及校准后的血压计算模型,得到血压检测值;
31.其中血压计算模型的校准过程为:
32.基于参考血压值及提取的特征参数,计算得到一组校准系数;其中,校准系数的计算模型为参考血压值及提取的特征参数的设定多项式函数;
33.将校准系数作为已知初始血压计算模型的设定项的系数,来校准血压计算模型,得到校准后的血压计算模型。
34.在一个或多个实施例中,在静息状态或者运动幅度小于设定阈值的情境下,采用变窗长的滑动滤波算法对单路脉搏波信号滤波。
35.在一个或多个实施例中,在运动幅度大于设定阈值的情境下,采用预设分布的光电传感器来识别手腕运动方式,再采用与手腕运动方式相匹配的光电补偿策略对消除个体化差异之后的单路脉搏波信号进行光电补偿,最后依次通过经验模态的分解与重构及变窗长的滑动滤波算法对光电补偿后的单路脉搏波信号进行滤波。
36.与现有技术相比,本发明的有益效果是:
37.本发明提供了一种基于单路脉搏波的血压监测装置,其采集消除个体化差异之后的单路脉搏波信号,在静息状态或者运动幅度小于设定阈值的情境下,采用变窗长的滑动滤波算法对单路脉搏波信号滤波,在运动幅度大于设定阈值的情境下,采用预设分布的光电传感器识别手腕运动方式,针对不同的运动方式,采用相匹配的光电补偿策略进行光电补偿,然后通过经验模态的分解与重构、变窗长的滑动滤波算法消除运动噪声,基于提取的特征参数及校准后的血压计算模型,计算血压检测值,解决了基于单路脉搏波进行检测血压时血压检测的精度差的问题,从信号采集过程、信号处理过程和计算模型这三个方面降低了血压检测误差,提高了血压检测结果的准确性。
38.本发明附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
39.构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
40.图1是本发明实施例的基于单路脉搏波的血压监测装置结构示意图;
41.图2是本发明实施例的基于单路脉搏波的血压监测装置原理图;
42.图3是压力传感器对角分布方式;
43.图4是压力传感器对四角分布方式;
44.图5是压力传感器斜对角分布方式;
45.图6是压力传感器两侧边分布方式;
46.图7是两个肤色差异较大的用户在相同光源光强下测到的脉搏波的对比图;
47.图8是调节光源光强后两个用户测到的脉搏波的对比图;
48.图9(a)是大窗定窗长滑动滤波效果;
49.图9(b)是小窗定窗长滑动滤波效果;
50.图9(c)是采用的变变窗长的滑动滤波算法的滤波效果图;
51.图10是本发明实施例的使用变窗长的滑动滤波算法对信号进行滤波的流程;
52.图11是光电传感器中心对称分布方式;
53.图12是光电传感器对角分布方式;
54.图13是光电传感器沿沿腕表横向对称轴对称分布方式;
55.图14是光电传感器四角分布方式;
56.图15(a)是手腕向外扭动运动状态下的信号;
57.图15(b)是手屈腕运动状态下的信号;
58.图15(c)是手腕向内扭动运动状态下的信号;
59.图15(d)是抬腕运动状态下的信号;
60.图16(a)是手腕向外扭动;
61.图16(b)是手屈腕运动;
62.图16(c)是手腕向内扭动;
63.图16(d)是抬腕;
64.图17是手腕向内扭动运动状态下原始信号;
65.图18是光电补偿后的信号;
66.图19是分解重组后的信号;
67.图20是进行变窗长的滑动滤波得到去除运动噪声的信号;
68.图21是本发明实施例的校准过程中提取的部分脉搏波特征。
具体实施方式
69.下面结合附图与实施例对本发明作进一步说明。
70.应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
71.需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
72.实施例一
73.参照图1和图2,本实施例提供了一种基于单路脉搏波的血压监测装置,其包括信号采集模块、信号滤波模块和血压计算及校准模块。
74.(1)信号采集模块
75.信号采集模块,其用于采集消除个体化差异之后的单路脉搏波信号。
76.想要获取高精度血压,首先要采集到的高质量的脉搏波信号。想要获取高质量信号首先要解决的问题是个体化差异对信号采集的影响,信号采集过程中个体化差异对于脉搏波信号形态和信号噪声干扰都有重要影响,严重影响后续的信号分析和特征提取,使用这种具有个体化差异的脉搏波得到的血压值缺乏普适性,只在监测特定环境下的特定用户血压时表现良好,而无法适用其他用户。信号采集过程中的个体化差异主要包括佩戴方式差异化和皮肤特性个体化差异。
77.具体地,所述个体化差异包括佩戴方式差异化和皮肤特性个体化差异。
78.其中,佩戴方式差异化包括用户腕表佩戴习惯不同所导致的松紧度不同、佩戴位置不同、佩戴平整度不同等差异。这种佩戴方式差异化除了影响外界环境光干扰外,还会影响腕表传感器与手腕皮肤的间隙距离大小与间隙的平稳性,即影响光学信号的光程长短和光程稳定性,最终导致脉搏波信号的幅度和信号质量有较大差异。
与标准出射光强i0的比值,皮肤特征系数的计算公式为
89.其中,在所述信号采集模块中,量化皮肤特性,根据皮肤特征系数与光源光强的模型,计算光源光强调整值;调整后的光源光强为i=i0*(a+b*ε),其中a 和b为匹配系数,ε为受试者的皮肤特征系数,i0为标准出射光强,i1为当前出射光强;is为选定的标准光源光强。
90.皮肤特征系数与光源光强的模型有多种形式:
91.(a)连续函数型:光源光强调整值i=is*(a+b*ε)其中a,b为匹配系数,ε为受试者的皮肤特征系数,is为选定的标准光源光强。
92.(b)分段函数型:给皮肤特征系数划分不同的阈值区间,对不同阈值区间内的皮肤特征系数采用不同的恒定光源光强。
93.例如:划分阈值k1和k2,其中k1《k2。当皮肤特征系数小于k1时,令光源光强为ia,当皮肤特征系数大于k1且小于k2时,令光源光强为ib,当皮肤特征系数大于k2时,令光源光强为ic。
94.调整光强的具体措施也有多种,包括:
95.(a)增强单个光发生器的功率。方法有多种,例如增强工作电流、增强工作电压等。
96.(b)增加光发生器的工作数量等。
97.图7为两个肤色差异较大的用户在相同光源光强下测到的脉搏波的对比图,其中用户一的皮肤色度较深,用户二的皮肤色度较浅。图7中可以清晰看出用户2测到的脉搏波幅度较大且信号质量较好。这是因为用户2的皮肤较白且毛发较少,对光信号在入射和出射过程中造成的损耗较少,信号信噪比更大,所以信号质量较高。
98.图8为调节光源光强后两个用户测到的脉搏波的对比图,通过图7和图8的对比可以看出用户二的脉搏波的幅度和质量都大幅增加。这是因为增大了用户2测量过程的光源光强,弥补了光在入射和出射过程中的损耗,提高了信噪比。
99.(2)信号滤波模块
100.在所述信号滤波模块中,在静息状态或者运动幅度小于设定阈值的情境下,采用变窗长的滑动滤波算法对单路脉搏波信号滤波。
101.在运动幅度大于设定阈值的情境下,采用预设分布的光电传感器来识别手腕运动方式,再采用与手腕运动方式相匹配的光电补偿策略对消除个体化差异之后的单路脉搏波信号进行光电补偿,最后依次通过经验模态的分解与重构及变窗长的滑动滤波算法对光电补偿后的单路脉搏波信号进行滤波。
102.虽然在信号采集之前通过压力传感器调控和调节光源光强的方法消除了个体化误差对信号采集的影响,但是脉搏波信号在采集过程中还会受到信号漂移、运动噪声、随机噪声等噪声的干扰。而且因为采集信号时的环境多变,每次采集到的信号受噪声干扰的程度不同,现有的能够在可穿戴设备上运行的对算力要求不高的滤波算法无法动态适应不同噪声污染程度下的信号滤波,经常出现信号细节被滤除或者噪声滤除不彻底的情况,无法在滤除信号噪声的同时无法最大程度的保留信号细节。
103.滑动滤波算法在消除随机噪声干扰,滤除信号漂移现象等有较好的表现,而且滑动滤波算法原理简单,占用内存较小,非常适用于可穿戴设备。但是滑动滤波算法的滤波效
果受滑动窗长的影响较大,滑动滤波算法的滤波窗长越大,噪声滤除越彻底,同时能够保留的信号细节越少,如图9(a)所示;滑动滤波算法的滤波窗长越小,能够保留的信号细节越多,但是容易出现噪声滤除不彻底的情况,如图9(b)所示。图9(c)为采用的变变窗长的滑动滤波算法的滤波效果图。
104.信号滤波模块,其用于采用变窗长的滑动滤波算法对单路脉搏波信号滤波。
105.其中,在所述信号滤波模块中,所述滑动滤波算法的滤波窗长和滤波次数由所述单路脉搏波信号的质量来决定的。
106.如图10所示,此处所说的变变窗长的滑动滤波算法是指用噪声系数定量评估信号受噪声污染的程度,噪声系数由原始信号的一阶差分信号和二阶差分信号的零点数决定。然后由噪声系数于滤波窗长的关系模型确定滤波窗长。确定滤波窗长后对信号进行多种滑动滤波方式,包括滑动均值滤波、滑动中值滤波、滑动加权滤波。选择多个滤波结果中噪声系数最小的结果作为一次滤波的结果。若一次滤波结果的噪声系数不满足设定的阈值要求,则重新计算滤波窗长,重复滤波过程,直至滤波结果的噪声系数满足要求。噪声系数的阈值来源于实验数据,与信号类型和需要的信号质量有关。
107.本实施例改进了滑动滤波算法,使用变窗长的滑动滤波算法来对信号进行滤波,即根据信号受噪声污染程度动态决定滑动滤波算法的滤波窗长和滤波次数。目的是适应不同噪声环境下的信号滤波,在滤除噪声的同时最大程度的保留信号的有效信息。
108.滤波实施过程如下:
109.将原始信号进行一阶差分,计算一阶差分信号中零点的数量k1。将原始信号进行二阶差分,计算二阶差分信号中零点的数量k2。根据一阶差分信号的零点数量k1和二阶差分信号的零点数量k2计算噪声系数,根据模型得到噪声系数:β=f(k1,k2),其中a,b为匹配系数,β为噪声系数。
110.零点判断标准:
111.(1)如果信号的相邻两个采样点数值由正变负或者由负变正,则在两点中间存在一个零点。
112.(2)如果信号的某一采样点数值为0,则这个点为零点。
113.得到噪声系数后,根据模型得到滤波窗长,滤波窗长的计算公式为l=l0(c +d*β),其中c,d为匹配系数,β为噪声系数,l0为经验窗长。
114.经验窗长l0的计算过程:人体每分钟脉搏数通常在[s1,s2]之间,在采样率确定的情况下,脉搏波的周期长度=采样率*60/每分钟脉搏数,根据模型可以计算得到脉搏波周期长度区间为[s3,s4]。经验窗长模型为:窗长l0=e*s3+(1-e)*s4,其中e为匹配系数。
[0115]
滑动均值滤波算法:n为滑动滤波窗长值;
[0116]
滑动中值滤波算法:y(k)=med{x(k),x(k+1),...x(k+n-1)},0≤k≤n,n滑动滤波为窗长值;
[0117]
得到滤波窗长后,对信号进行多种滑动滤波,包括滑动均值滤波、滑动中值滤波、滑动加权滤波等,选择噪声系数最小的结果作为滤波结果。如果该滤波结果的噪声系数符合阈值要求,则滤波过程结束,噪声系数的阈值来源于实验数据,与信号类型和需要的信号质量有关。如果噪声系数不满阈值要求,则重复上述滤波过程,直至滤波结果的噪声系数满
足要求,整体流程如图10所示。滤波效果如图9(c)所示。
[0118]
实验数据表明:变窗长的滑动滤波算法对于平静状态或者轻微运动状态下获取的信号有较好的滤波效果,但是对于剧烈运动下采集的信号滤波效果较差。
[0119]
在本实施例中,针对剧烈运动下的信号滤波,使用的腕表中有特定分布的一组光电传感器,在不同的手腕运动状态下,不同分布位置的光电传感器采集到的信号表现不同,根据特定分布的多光电的信号表现可以分析得到手腕的运动方式和运动强度,具体见运动噪声去除例子部分。可以分辨的手腕运动方式包括抬腕、屈腕、手腕向内扭动、手腕向外扭动。
[0120]
光电传感器可能的几种分布方式有:沿腕表横向对称轴对称分布,沿腕表对称中心对角对称分布,图11-图14展示了几种光电传感器可能的分布方式。
[0121]
运动噪声去除例子:以图11的光电分布方式为例,展示了两个光电传感器在抬腕、屈腕、手腕向内扭动、手腕向外扭动四种手腕运动状态下的信号表现,如图15(a)-图15(d),进而对应的四种手腕运动方式如图16(a)-图16(d)所示。
[0122]
分析针对不同的手腕运动方式,利用多个光电传感器采集的信号对运动进行初步光电补偿,消除部分运动噪声,如图18所示。然后对光电补偿信号进行经验模态分解和重构。经过经验模态的分解与重组后,运动噪声可以进一步去除。最后再利用上述的滑动滤波算法对信号进行进一步滤波处理,得到去除了大部分运动噪声的信号。
[0123]
通过提取光电传感器采集的信号特征,可以得到手腕的运动方式。
[0124]
以屈腕动作为例,需要提取信号特征包括:信号异常区域的时间间隔、上升沿时间间隔、上升沿斜率、峰值幅度、谷值幅度、两个光电信号的异常区域的峰值点时间差等,如果有多个信号异常区域,则需要多次提取。信号异常区域指信号幅值在极短时间内大幅增加或减少。
[0125]
将提取的特征值代入模型,可以得到运动剧烈程度的评估。模型为θ=f(a1,a2,...,an)
[0126]
其中θ为评价运动剧烈程度的指标,a1,
…an
为提取特征的值。
[0127]
如果θ小于系统预设阈值,则认为运动程度不剧烈,则只应用变窗长的滑动滤波算法进行信号处理。如果θ小于系统预设阈值,则认为运动剧烈。针对每种手腕运动方式,用多个光电传感器的结果对运动进行补偿。以手腕向内扭动时采集的信号为例,原始信号如图17所示,将两个光电传感器采集的信号相加作为光电补偿,光电补偿后的效果如图18所示。然后对光电补偿后的信号进行经验模态分解与重构,即将信号分解成若干个内涵模态分量(imf),分解完成后将imf2,imf3,imf4相加得到处理后的信号,如图19所示。最后对信号进行变窗长的滑动滤波得到去除运动噪声的信号如图20所示。
[0128]
(3)血压计算及校准模块
[0129]
血压计算及校准模块,其用于提取滑动滤波后的单路脉搏波信号的特征参数,并基于提取的特征参数及校准后的血压计算模型,得到血压检测值;
[0130]
经过个体化差异消除,噪声滤除过程之后,就可以得到波形质量较好的脉搏波信号。然后就可以进行波形的特征提取,将提取的特征代入提前建好的血压计算模型中就可以计算得到血压值。
[0131]
初始血压计算模型为:sbp=f1(x1,x2,...xn),dbp=f2(x1,x2,...xn),其中sbp为
收缩压,dbp为舒张压,x1,x2,...,xn为血压计算所需要特征的值,f1(x1,x2,...,xn)与 f2(x1,x2,...,xn)代表基于相同提取特征的不同的计算模型。
[0132]
血压计算模型需要的特征:重搏波峰值pd、重搏波谷值p
dv
、主波峰值p
p
、升支最大斜率s1、上升段面积au、下降段面积ad、上升段下降段面积比aa/ad,重搏波与主波的时间间隔t
dp
、主波与主波的时间间隔t
pp
、收缩期时间st、舒张期时间dt、升支最大斜率点与重搏波波峰的时间间隔t
md
、升支最大斜率点与重搏波波谷的时间间隔等特征t
mdv
,起点波谷到重搏波波谷的时间t
vdv
,重搏波波谷到终点波谷的时间t
dvv
,心血管特征量k,升支降支时间比t
vdv
/t
dvv
,收缩时间比 st/t
pp
,重搏波与主波的间隔时间占比t
dp
/t
pp

[0133]
在所述血压计算及校准模块,提取滑动滤波后的单路脉搏波信号的特征参数为:与血压的皮尔逊相关系数超过设定阈值(例如:0.6)的特征参数。
[0134]
皮尔逊相关系数的计算方式:
[0135][0136]
其中,x表示参考血压bp,y表示某个需要进行相关性分析的特征参数, cov(x,y)表示协方差,var[x]表示x的方差,var[y]表示y的方差。
[0137]
虽然血压计算模型能够根据脉搏波特征的变化来反应血压的变化趋势,但是不同用户之间的血压基准值(平静状态下的血压)存在较大差别,而且脉搏波特征变化幅度相同的情况下,血压的变化幅度也存在一定的差别,这些差别是血压计算误差的第三个影响方面。
[0138]
为了消除这一方面的误差影响,在正式测量之前设备需要进行血压校准,目的是对血压计算模型的系数进行校正,让血压计算模型更适应当前用户的脉搏波特征,提供更高精度的血压计算结果。
[0139]
其中在所述血压计算及校准模块,血压计算模型的校准过程为:
[0140]
基于参考血压值及提取的特征参数,计算得到一组校准系数;其中,校准系数的计算模型为参考血压值及提取的特征参数的设定多项式函数;
[0141]
将校准系数作为已知初始血压计算模型的设定项的系数,来校准血压计算模型,得到校准后的血压计算模型。
[0142]
校准过程中提取的脉搏波特征包括:重搏波峰值pd、重搏波谷值p
dv
、主波峰值p
p
、升支最大斜率s1、上升段面积au、下降段面积au、上升段下降段面积比 aa/au,重搏波与主波的时间间隔t
dp
、主波与主波的时间间隔t
pp
、收缩期时间st、舒张期时间dt、升支最大斜率点与重搏波波峰的时间间隔t
md
、升支最大斜率点与重搏波波谷的时间间隔等特征t
mdv
,起点波谷到重搏波波谷的时间t
vdv
,重搏波波谷到终点波谷的时间t
dvv
,心血管特征量k,升支降支时间比t
vdv
/t
dvv
,收缩时间比st/t
pp
,重搏波与主波的间隔时间占比t
dp
/t
pp
,部分特征展示在图21中。在图21中,a1为重搏波峰值,t1为收缩时间,t2为主波与重搏波的时间间隔,t3 为周期时间,t4为舒张时间,t5为最大斜率点与重搏波的时间间隔。
[0143]
在所述血压计算及校准模块中,所述初始血压计算模型为所述特征参数的预设多项式函数。
[0144]
部分校准系数的计算模型为:
[0145]
a1=f(t
dp
)a2=f(pd)
[0146]
b1=f(sbp
ref
,t
pp
,a1)b2=∫(sbp
ref
,dt,a2)b3=∫(sbp
ref
,st,dbp
ref
)
[0147]
其中a1,a2,b1,b2,b3为校准系数,t
dp
为重搏波与主波的时间间隔,sbp
ref
为收缩压参考值,t
pp
为周期时间,pd为重搏波峰值,dt为舒张时间,st为收缩时间。
[0148]
f(t
dp
)为关于重搏波与主波间隔的多项式;f(sbp
ref
,t
pp
,o1)为关于收缩压参考值、周期时间、校准参数a1的多项式;f(pd)为关于重搏波峰值的多项式; f(sbp
ref
,dt,a2)为关于收缩压参考值、舒张时间、校准参数a2的多项式; f(sbp
ref
,st,dbp
ref
)为关于收缩压参考值,舒张压参考值、收缩时间的多项式。
[0149]
表1校正前后参考sbp与计算sbp对比
[0150][0151]
其中,参考sbp指欧姆龙血压计测到的收缩压值,计算sbp是指计算模型得到的收缩压值。计算可以得到校准前参考sbp与计算sbp的误差为
ꢀ‑
3.125
±
10.834mmhg,而校准后参考sbp与计算sbp的误差为-0.875
±
3.588mmhg。
[0152]
表2校正前后参考dbp与计算dbp对比
[0153][0154]
其中,参考dbp指欧姆龙血压计测到的舒张压值,计算dbp是指计算模型得到的舒张压值。
[0155]
计算可以得到校准前参考dbp与计算dbp的误差为-1.75
±
7.450mmhg,
[0156]
而校准后参考dbp与计算dbp的误差为1.75
±
3.122mmhg。
[0157]
实施例二
[0158]
本实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处
理器执行时实现如下步骤:
[0159]
采集消除个体化差异之后的单路脉搏波信号;
[0160]
对单路脉搏波信号进行滤波;
[0161]
提取滤波后的单路脉搏波信号的特征参数,并基于提取的特征参数及校准后的血压计算模型,得到血压检测值;
[0162]
其中血压计算模型的校准过程为:
[0163]
基于参考血压值及提取的特征参数,计算得到一组校准系数;其中,校准系数的计算模型为参考血压值及提取的特征参数的设定多项式函数;
[0164]
将校准系数作为已知初始血压计算模型的设定项的系数,来校准血压计算模型,得到校准后的血压计算模型。
[0165]
其中,在对单路脉搏波信号进行滤波的过程中:
[0166]
在静息状态或者运动幅度小于设定阈值的情境下,采用变窗长的滑动滤波算法对单路脉搏波信号滤波。
[0167]
在运动幅度大于设定阈值的情境下,采用预设分布的光电传感器来识别手腕运动方式,再采用与手腕运动方式相匹配的光电补偿策略对消除个体化差异之后的单路脉搏波信号进行光电补偿,最后依次通过经验模态的分解与重构及变窗长的滑动滤波算法对光电补偿后的单路脉搏波信号进行滤波。
[0168]
实施例三
[0169]
本实施例提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如下步骤:
[0170]
采集消除个体化差异之后的单路脉搏波信号;
[0171]
对单路脉搏波信号进行滤波;
[0172]
提取滤波后的单路脉搏波信号的特征参数,并基于提取的特征参数及校准后的血压计算模型,得到血压检测值;
[0173]
其中血压计算模型的校准过程为:
[0174]
基于参考血压值及提取的特征参数,计算得到一组校准系数;其中,校准系数的计算模型为参考血压值及提取的特征参数的设定多项式函数;
[0175]
将校准系数作为已知初始血压计算模型的设定项的系数,来校准血压计算模型,得到校准后的血压计算模型。
[0176]
其中,在对单路脉搏波信号进行滤波的过程中:
[0177]
在静息状态或者运动幅度小于设定阈值的情境下,采用变窗长的滑动滤波算法对单路脉搏波信号滤波。
[0178]
在运动幅度大于设定阈值的情境下,采用预设分布的光电传感器来识别手腕运动方式,再采用与手腕运动方式相匹配的光电补偿策略对消除个体化差异之后的单路脉搏波信号进行光电补偿,最后依次通过经验模态的分解与重构及变窗长的滑动滤波算法对光电补偿后的单路脉搏波信号进行滤波。
[0179]
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。