首页 > 喷涂装置 专利正文
粘合剂的选定方法、粘合复合体和粘合复合体的制造方法与流程

时间:2022-02-13 阅读: 作者:专利查询

粘合剂的选定方法、粘合复合体和粘合复合体的制造方法与流程

1.本发明涉及粘合剂的选定方法、粘合复合体和粘合复合体的制造方法,更详细地,涉及能够考虑接合了不同种材料的粘合复合体的直至粘合破坏的过程而更简便且适当地选定所使用的粘合剂的粘合剂的选定方法,使用了该粘合剂的粘合复合体和粘合复合体的制造方法。


背景技术:

2.在选定所使用的粘合剂的情况下,要考虑粘合剂对粘合对象的材料的接合性能(粘合强度、耐久性等)。以往,提出了各种对粘合剂的接合性能进行解析的方法(例如,专利文献1、2)。
3.近年,通过粘合剂接合的材料多样化,对不同种材料彼此进行接合的情况增加。在接合了不同种材料彼此的粘合复合体中,由于相互的材料的特性不同,因此粘合复合体受到外力直至粘合破坏的过程容易受相互的材料的行为影响。相互的材料的特性差异越大,则对该过程的影响容易越大。另外,为了确保粘合复合体的接合部分的耐久性,考虑直至粘合破坏的过程是期望的。因此,在对将不同种材料接合的粘合剂的接合性能进行解析来选定适当的粘合剂时,对现有的方法有改善的余地。
4.现有技术文献
5.专利文献
6.专利文献1:日本特开2016-148888号公报
7.专利文献2:日本特开2019-61601号公报


技术实现要素:

8.发明所要解决的课题
9.本发明的目的是提供能够考虑接合了不同种材料的粘合复合体的直至粘合破坏的过程而更简便且适当地选定所使用的粘合剂的粘合剂的选定方法,使用了该粘合剂的粘合复合体和粘合复合体的制造方法。
10.用于解决课题的手段
11.用于实现上述目的的本发明的粘合剂的选定方法的特征在于:基于对将不同种材料的一种材料与另一种材料通过粘合剂接合并一体化了的粘合复合体进行在所述粘合剂会产生剪切变形的方向上赋予拉伸剪切载荷的剪切试验直至粘合破坏而取得的试验数据,来制作所述粘合复合体的二维或三维的fem解析模型,使所述粘合剂不同来制作多个所述解析模型,对各个所述解析模型进行在该解析模型所使用的所述粘合剂会产生剪切变形的方向上赋予拉伸剪切载荷的模拟,基于所述解析模型在进行上述模拟的过程中产生的拉伸应力与该拉伸应力的产生位置,从各个所述粘合剂之中选定将所述一种材料与所述另一种材料接合的粘合剂。
12.本发明的粘合复合体的特征在于:其为使通过上述粘合剂的选定方法所选定的粘
合剂介于由所述一种材料制成的一种构件与由所述另一种材料制成的另一种构件之间并使所述一种构件与所述另一种构件一体化而成的。
13.本发明的粘合复合体的制造方法的特征在于:其中,使通过上述粘合剂的选定方法所选定的粘合剂介于由所述一种材料制成的一种构件与由所述另一种材料制成的另一种构件之间并使所述一种构件与所述另一种构件一体化。
14.发明的效果
15.根据本发明的粘合剂的选定方法,基于对将不同种材料的一种材料与另一种材料通过粘合剂接合并一体化了的粘合复合体进行在所述粘合剂会产生剪切变形的方向上赋予拉伸剪切载荷的剪切试验直至粘合破坏而取得的试验数据,来制作所述粘合复合体的二维或三维的fem解析模型,使所述粘合剂不同来制作多个解析模型。然后,对各个解析模型进行在所使用的粘合剂会产生剪切变形的方向上赋予拉伸剪切载荷的模拟,使用所述解析模型在进行上述模拟的过程中产生的拉伸应力和该拉伸应力的产生位置的数据。因此,虽然是进行对各个解析模型赋予拉伸剪切载荷的简单模拟的方法,但能够考虑粘合复合体的直至粘合破坏的过程来选定粘合剂。结果,能够从在模拟中使用了的各个粘合剂之中适当地选定能确保满足要求的接合性能的粘合剂。
16.另外,根据本发明的粘合复合体和粘合复合体的制造方法,通过使用利用上述选定方法所选定的适当的粘合剂,可以得到更适合使用条件的粘合复合体。与此相伴,有利于提高粘合复合体的耐久性、对耐久性的可靠度。
附图说明
17.图1是例示本发明的粘合复合体的立体图。
18.图2是以侧视来例示将图1的粘合复合体的试验片设置于剪切试验机的状态的说明图。
19.图3是以俯视来例示图2的试验片的说明图。
20.图4是例示通过剪切试验取得的试验数据的表图。
21.图5是例示解析模型的说明图。
22.图6是例示向图5的解析模型赋予了拉伸剪切载荷的状态的说明图。
23.图7是例示解析模型在进行模拟的过程中产生的最大拉伸应力与拉伸剪切载荷的关系的表图。
具体实施方式
24.以下,基于附图所示的实施方式来说明本发明的粘合剂的选定方法、粘合复合体和粘合复合体的制造方法。
25.图1例示的本发明的粘合复合体1具备由不同种材料的一种材料2制成的一种构件2a、由另一种材料3制成的另一种构件3a、和介于一种构件2a与另一种构件3a之间的粘合剂4,相互的构件2a、3a通过粘合剂4接合而一体化。一种构件2a、另一种构件3a的形状不限于平板状,可以采用各种形状。即,一种构件2a使用一种材料2而成型为各种形状,另一种构件3a使用另一种材料3而成型为各种形状。
26.此处,所谓不同种材料,不仅是指互不相同的材质(例如,不同种类的树脂),还包
括即使是相同材质(例如相同种类的树脂),但混合、埋设的增强材料的有无、增强材料的规格等不同的情况。即,在互相的机械特性(拉伸弹性模量、抗拉强度等)不同的情况下,成为不同种材料。
27.所使用的一种材料2,例如拉伸弹性模量为500mpa以上且2000mpa以下,抗拉强度为10mpa以上且30mpa以下。作为一种材料2,可以例示聚丙烯等各种热塑性树脂、环氧树脂等各种热固性树脂。在聚丙烯中混合了滑石的一种材料2的情况下,拉伸弹性模量为2gpa以下,抗拉强度为18mpa以下,泊松比为0.4。
28.所使用的另一种材料3,例如拉伸弹性模量为2000mpa以上且10000mpa以下,抗拉强度为30mpa以上且150mpa以下。作为另一种材料3,可以例示在聚丙烯等各种热塑性树脂、环氧树脂等各种热固性树脂中混合、埋设了增强材料的材料。另一种材料3的拉伸弹性模量,例如为一种材料2的拉伸弹性模量的2倍以上、或3倍以上。在聚丙烯中混合了玻璃纤维的另一种材料3的情况下,拉伸弹性模量为2.7gpa以上且7.7gpa以下,抗拉强度为80mpa以上且180mpa以下,泊松比为0.4。一种材料2、另一种材料3的拉伸弹性模量、抗拉强度、泊松比是基于jis k7161的规定来计算的。
29.所使用的粘合剂4,例如拉伸弹性模量为1mpa以上且25mpa以下,抗拉强度(抗拉粘合强度)为3mpa以上且25mpa以下,泊松比为0.4~0.5。这些值是当粘合剂4固化并表现出充分的粘合力时的值。粘合剂4的抗拉强度、拉伸弹性模量、泊松比是基于jis k 6849的规定来计算的。
30.作为粘合剂4,只要是与一种材料2和另一种材料3粘合的物质即可以采用。在一种材料2和另一种材料3的主成分为聚氨酯的情况下,例如可以使用由包含氨基甲酸酯预聚物的主剂和包含多元醇的固化剂构成的双液型聚氨酯系的粘合剂4。
31.具体而言,在一种材料2和另一种材料3的主成分为聚氨酯的情况下,可以为下述的组合物:双液型聚氨酯系的粘合剂4的主剂中的氨基甲酸酯预聚物至少包含使重均分子量为1000以上且10000以下的2官能型或3官能型聚醚多元醇与4,4,4-二苯基甲烷二异氰酸酯以异氰酸酯指数(nco/oh摩尔比)为1.5~40反应而得到的氨基甲酸酯预聚物,并且固化剂中的多元醇至少包含重均分子量1000以下的3官能性多元醇或重均分子量400以下的2官能性多元醇中的任一种。进一步地,可以为下述的组合物:其是在该粘合剂4的主剂或固化剂的任一者中至少包含碳或碳酸钙的双液型聚氨酯系的粘合剂4,以表示其主剂中的异氰酸酯基与固化剂中的羟基的比例的异氰酸酯指数(nco/oh摩尔比)为1/0.1~1/0.9将主剂与固化剂混合。
32.在该实施方式中,以使用了在聚丙烯中混合了滑石的树脂(拉伸弹性模量为1.6gpa左右)作为一种材料2、并且使用了在聚丙烯中混合了玻璃纤维的树脂(拉伸弹性模量为5.4gpa左右)作为另一种材料3的情况为例进行说明。另外,以使用了粘合剂4a(拉伸弹性模量2mpa、抗拉强度5.6mpa、断裂伸长率497%、jis a硬度50)、粘合剂4b(拉伸弹性模量40mpa、抗拉强度10.9mpa、断裂伸长率180%、jis a硬度80)、粘合剂4c(拉伸弹性模量279mpa、抗拉强度15.0mpa、断裂伸长率50%以下、jis a硬度90以上)作为粘合剂4的情况为例进行说明。
33.在本发明的粘合剂的选定方法中,如图5所例示的那样,使用将一种材料2与另一种材料3通过粘合剂4接合并一体化了的粘合复合体1的二维或三维的fem解析模型1m。该解
析模型1m具有与实际的粘合复合体1相同的构成要素。在附图中,对解析模型1m的各个构成要素标注与实际的粘合复合体1的构成要素相同的符号。使粘合剂4不同来制作多个解析模型1m。粘合剂4的拉伸弹性模量对粘合复合体1的接合性能有大的影响,因此如上所述制作使用了拉伸弹性模量不同的粘合剂4(4a、4b、4c)的多个解析模型1m(1ma、1mb、1mc)。解析模型1m中使用的粘合剂4不限于3种,只要使用适当数量的种类即可。
34.该解析模型1m基于实验数据来制作。具体而言,如图2、图3所例示的那样,使用剪切试验机5,对将一种材料2与另一种材料3通过粘合剂4接合并一体化了的粘合复合体1的试验片进行剪切试验。在粘合复合体1中,在相对于一种构件2a与另一种构件3a互相接合的对向面平行的方向受到偏移外力(剪切力)的情况下,易于产生粘合破坏。因此,通过进行在粘合复合体1的试验片的粘合剂4会产生剪切变形的方向上赋予拉伸剪切载荷的剪切试验,虽然是简化了粘合破坏模式的试验但能够高精度地评价接合性能。
35.剪切试验机5具备一对保持器6a、6b和运算装置7。一个保持器6a能够沿与另一个保持器6b接近和远离的方向移动,另一个保持器6b被固定为不能相对于基座移动。粘合复合体1的试验片的一种材料2被一个保持器6a夹持,另一种材料3被另一个保持器6b夹持。而且,使一个保持器6a以远离另一个保持器6b的方式沿箭头所示的方向移动,在粘合剂4会产生剪切变形的方向上赋予拉伸剪切载荷。进行剪切试验直至试验片发生粘合破坏。即,进行该剪切试验直至粘合部分及其周边(一种材料2、另一种材料3、粘合剂4中的至少任一者)破坏、或实质上成为破坏状态。
36.通过进行该剪切试验,如图4所例示的那样,通过公知的方法测定、取得直至试验片发生粘合破坏为止的试验片中产生的拉伸应力、拉伸变形量的试验数据(s-s曲线数据),输入、存储至运算装置7。图4中记载了如上所述使一种材料2和另一种材料3共同而仅使粘合剂4不同的3种粘合接合体1的试验片的试验数据d1、d2、d3。
37.对于各个试验片,使一种材料2和另一种材料3的长度为100mm、宽度为25mm、厚度为3mm左右,使粘合剂4的粘合长度为10mm、粘合宽度为25m、厚度为3mm左右。对粘合面进行规定的等离子体处理后,涂布粘合剂4。将所赋予的拉伸剪切载荷的拉伸剪切速度设定为27mm/min。
38.试验数据d1是使用了粘合剂4a的解析模型1ma的数据,最大拉伸应力为4mpa,此时的拉伸变形量为20mm。在最大拉伸应力产生时,一种材料2和另一种材料3未被破坏,粘合剂4a拉伸变形大,还观察到内聚破坏的产生。试验数据d2是使用了粘合剂4b的解析模型1mb的数据,最大拉伸应力为3.2mpa,此时的拉伸变形量为4.46mm。在最大拉伸应力产生时,一种材料2未被破坏,也未发生粘合剂4的内聚破坏,但是另一种材料3被破坏。试验数据d3是使用了粘合剂4c的解析模型1mc的数据,最大拉伸应力为2.8mpa,此时的拉伸变形量为2.66mm。在最大拉伸应力产生时,一种材料2未被破坏,也未发生粘合剂4的内聚破坏,但是另一种材料3被破坏。
39.在运算装置7中,除了该试验数据外,还输入进行模拟的粘合复合体1的一种材料2、另一种材料3、粘合剂4的物性数据(表示拉伸弹性模量、抗拉强度的s-s曲线数据、泊松比等)、外形数据(长度、厚度、宽度、粘合面积等)。如果还有物性数据的温度依赖性数据等,则也将其输入。
40.进而,基于输入到运算装置7的数据,通过公知的方法制作解析模型1m。若如该实
施方式那样使用实体模型作为解析模型1m,则变得容易处理。如图5所例示的那样,使解析模型1m的另一种材料3的下端部完全约束,进行在粘合剂4会产生剪切变形的方向上赋予拉伸剪切载荷的模拟。可以对使一种材料2的上端部向上方的一个方向移动的移动量进行控制来进行模拟,也可以对在相对于一种材料2的上端部的上方的一个方向上赋予的拉伸剪切载荷的大小进行控制来进行模拟。
41.对使用了所制作的解析模型1m的解析结果与试验数据进行比较(s-s曲线数据彼此的比较等),确认了两者的背离少,解析模型1m在实用上可适用。需要说明的是,不必取得每个规格的粘合复合体1的实验数据来制作解析模型1m。例如,如果能够确认基于代表性规格的粘合复合体1的试验数据制作的解析模型1m在实用上可适用,则只要将成为解析对象的粘接复合体1的物性数据等输入到该解析模型1m中使用即可。
42.通过该模拟,如图6所例示的那样,使解析模型1m拉伸变形。掌握各个解析模型1m在进行该模拟的过程中产生的拉伸应力和该拉伸应力的产生位置。而且,基于该掌握了的结果,从各个粘合剂4a、4b、4c之中选定将一种材料2(一种构件2a)与另一种材料3(另一种构件3a)接合的适当的粘合剂。
43.由于各个解析模型1m的规格不同,因此一种材料2、另一种材料3、粘合剂4所产生的拉伸应力、变形的程度根据各个解析模型1m而不同。因此,例如,基于各个解析模型1m的一种材料2、另一种材料3和粘合剂4各自在进行该模拟的过程中产生的最大拉伸应力与一种材料2、另一种材料3和粘合剂4各自的容许拉伸应力的比较来选定粘合剂4。
44.在图6所例示的解析模型1m中,计算出各网格中的拉伸应力,因此通过确认各个构件中产生最大拉伸应力的网格,可以确定各个构件中最大拉伸应力的产生位置。而且,当一种材料2在进行该模拟的过程中产生的最大拉伸应力超过一种材料2的容许拉伸应力时,通过运算装置7计算出对解析模型1m赋予的拉伸剪切载荷。同样地,当另一种材料3中产生的最大拉伸应力超过另一种材料3的容许拉伸应力时,计算出对解析模型1m赋予的拉伸剪切载荷。另外,当粘合剂4中产生的最大拉伸应力超过粘合剂4的容许拉伸应力时,计算出对解析模型1m赋予的拉伸剪切载荷。而且,在针对各个构件计算出的拉伸剪切载荷之中,最小值为该解析模型1m可承受的拉伸剪切载荷。
45.接下来,比较各个解析模型1m可承受的拉伸剪切载荷,该值越高越不易发生粘合破坏,判定为接合性能优异的解析模型1m。在判定接合性能按解析模型1ma、1mb、1mc的顺序优异的情况下,按粘合剂4a、4b、4c的顺序选定为适当的粘合剂4。
46.或者,也可以基于各个解析模型1m在进行该模拟的过程中产生的最大拉伸应力与该最大拉伸应力产生的位置的构件的容许拉伸应力的比较来选定粘合剂4。因此,在进行该模拟的过程中,取得最大拉伸应力的产生位置的数据。在图6所例示的解析模型1m中,计算出各网格中的拉伸应力,因此通过确认产生最大拉伸应力的网格,可以确定该解析模型1m中最大拉伸应力的产生位置。即,可以掌握最大拉伸应力在一种材料2、另一种材料3、粘合剂4的哪个位置产生。在该实施方式中,在进行模拟的所有过程中,计算出在另一种材料3的图6所例示的a部产生最大拉伸应力。
47.另外,在进行该模拟的过程中,如图7所例示的那样,取得各个解析模型1m中产生的最大拉伸应力的数据。图7中记载了解析模型1ma的解析数据s1、解析模型1mb的解析数据s2、解析模型1mc的解析数据s3。此处,如果将被判定为产生最大拉伸应力的另一种材料3的
容许拉伸应力设定为65mpa,则针对解析数据s1、s2、s3,通过运算装置7计算出当超过该容许拉伸应力65mpa时对解析模型1m赋予的拉伸剪切载荷。
48.根据图7所记载的解析数据s1、s2、s3,在解析模型1ma、1mb、1mc中,在另一种构件3中超过容许拉伸应力65mpa的最大拉伸应力的产生分别在拉伸剪切载荷超过1000n、680n、640n时。因此,判定按解析模型1ma、1mb、1mc的顺序粘合破坏(另一种构件3的破坏)不易产生、接合性能优异。其结果,作为将一种材料2与另一种材料3接合的适当的粘合剂4,按粘合剂4a、4b、4c的顺序来选定。
49.除了上述的粘合剂4的选定基准外,还可以基于各个解析模型1m在进行该模拟的过程中产生的最大变形量而从各个粘合剂4a、4b、4c之中选定适当的粘合剂4。在该情况下,对解析模型1m预先设定容许变形量(主要为拉伸变形量),通过运算装置7计算出解析模型1m在赋予了拉伸剪切载荷直至在模拟中解析模型1m可承受的拉伸剪切载荷为止的情况下产生的最大变形量(主要为拉伸变形量)。而且,在解析模型1m中产生的最大变形量超过容许变形量的情况下,从选定对象中排除该解析模型1m中使用的粘合剂4。
50.当选定在周围空间的制约严格的条件下使用的粘合复合体1所使用的粘合剂4时,可以利用基于该最大变形量的选定基准。也可以将基于上述的容许拉伸应力的选定基准作为第1优先,在其之后应用基于该最大变形量的选定基准。
51.作为制作解析模型1m时使用的物性数据,一般使用常温(15℃~30℃程度)下的数据,但是在还有温度依赖性数据的情况下,可以使用适合于粘合复合体1的使用条件的温度条件下的物性数据。如果也考虑这样的温度依赖性数据来选定粘合剂4,则易于选定更符合粘合复合体1的使用条件的适当的粘合剂4。可以将基于上述的容许拉伸应力的选定基准作为第1优先,将基于最大变形量的选定基准作为第2优先,在它们之后应用基于该温度依赖性数据的选定基准。
52.如上所述,根据该粘合剂的选定方法,对于基于对粘合复合体1进行拉伸剪切试验直至粘合破坏而取得的试验数据所制作的解析模型1m,进行赋予拉伸剪切载荷的模拟,使用解析模型1m在进行上述模拟的过程中产生的拉伸应力和该拉伸应力的产生位置的数据,因此虽然是进行对解析模型1m赋予拉伸剪切载荷的简单模拟的方法,但能够考虑粘合复合体1的直至粘合破坏的过程来选定粘合剂4。而且,通过对使粘合剂4(4a、4b、4c)不同的多个解析模型1m(1ma、1mb、1mc)进行上述模拟,从而可以从各个粘合剂4a、4b、4c之中适当地选定能够确保满足要求的接合性能的粘合剂4。
53.如果使用三维的解析模型1m,则易于以更高的精度预测粘合复合体1的实际接合性能。另一方面,若使用二维的解析模型1m,则可以大幅地削减模型制作所需的时间。在粘合复合体1的规格在宽度方向上一致且足够长的情况等下,即使是二维的解析模型1m也能够选定适当的粘合剂4。
54.在本发明的粘合复合体1的制造方法中,使通过上述选定方法所选定的粘合剂4介于由一种材料2制成的一种构件2a与由另一种材料3制成的另一种构件3a之间并进行压接。进而,通过将粘合剂4固化并养护至表现出充分的粘合力,从而使一种构件2a与另一种构件3a一体化。由此,能够得到图1例示的粘合复合体1。
55.根据本发明的粘合复合体和粘合复合体的制造方法,由于使用了适当的粘合剂4,因此可以得到更适合使用条件的粘合复合体1。与此相伴,有利于提高粘合复合体1的耐久
性、对耐久性的可靠度。
56.实施例
57.作为在上述的实施方式中说明的粘合接合体的试验样品的粘合剂4a、4b、4c,使用以表1所示的配合量(质量份)配合了主剂和固化剂的各成分的组合物来制作试验样品,并取得了试验数据。各个粘合剂4a、4b、4c的物性数据如上所述。使用基于该试验数据制作的解析模型进行模拟的结果如图7所示。
58.[表1]
[0059][0060]
表1中的各成分的详细情况如下所述。
[0061]
·
氨基甲酸酯预聚物1:将聚氧亚丙基二醇(三洋化成工业社制
サンニックス
pp2000,重均分子量2,000)、聚氧亚丙基三醇(三洋化成工业社制
サンニックス
gp3000,重均
分子量3,000)与mdi(二苯基甲烷二异氰酸酯)(住化
バイエルウレタン
社制
スミジュール
44s)以nco/oh(摩尔比)为2.0进行混合,使混合物在80℃的条件下反应5小时来制造。
[0062]
·
氨基甲酸酯预聚物2:将聚四亚甲基二醇(三菱
ケミカル
社制ptmg650,重均分子量650)、聚氧亚丙基二醇(三洋化成工业社制
サンニックス
pp2000,重均分子量2,000)与mdi(二苯基甲烷二异氰酸酯)(住化
バイエルウレタン
社制
スミジュール
44s)以nco/oh(摩尔比)为2.0进行混合,使混合物在80℃的条件下反应5小时来制造。
[0063]
·
氨基甲酸酯预聚物3:将聚氧亚丙基亚乙基二醇(agc社制
エクセノール
510,重均分子量4,000)与聚合mdi(东
ソー
社制
ミリオネート
mr-200)及碳二亚胺改性mdi(东
ソー
社制
ミリオネート
mtl)以nco/oh(摩尔比)为35.0进行混合,使混合物在80℃的条件下反应5小时来制造。
[0064]
·
异氰脲酸酯体:五亚甲基二异氰酸酯的异氰脲酸酯体
[0065]
·
炭黑:亲日化
カーボン
社制#200mp
[0066]
·
碳酸钙1:丸尾
カルシウム
社制
スーパー
s(重质碳酸钙)
[0067]
·
二氧化硅:日本
アエロジル
社制aerosil r972(表面处理气相法二氧化硅)
[0068]
·
脱水剂:
ソルベイジャパン
社制
ゼオシール
a-4(沸石(
ゼオラオイト
))
[0069]
·
增塑剂:
ジェイプラス
社制dinp(邻苯二甲酸二异壬酯)
[0070]
·
催化剂1:
サンアプロ
社制ucat-660m(dmdee(二吗啉代二乙基醚))
[0071]
·
多元醇1:旭硝子社制excenol450ed(聚氧亚丙基四醇(eo末端),重均分子量500)
[0072]
·
多元醇2:三菱
ケミカル
社制ptmg-2000(聚四亚甲基二醇(diol),重均分子量2,000)
[0073]
·
多元醇3:三菱
ケミカル
社制14bg(1,4-丁二醇,分子量90)
[0074]
·
多元醇4:日油社制
ユニオール
d-400(聚氧亚丙基二醇(diol),重均分子量400)
[0075]
·
多元醇5:agc社制
エクセノール
3020(聚亚丙基二醇(diol),重均分子量3,000)
[0076]
·
多元醇6:旭硝子社制preminol7001k(聚氧亚丙基三醇(eo末端),重均分子量6,500)
[0077]
·
多元醇7:agc社制
エクセノール
823(聚亚丙基亚乙基二醇(triol),重均分子量5,000)
[0078]
·
碳酸钙2:丸尾
カルシウム
社制
カルファイン
200(用脂肪酸进行了表面处理的碳酸钙)
[0079]
·
滑石:日本
ミストロン
社制
ソープストン
a(平均粒径3.5~4.0μm,长宽比9.5)
[0080]
·
催化剂2:日东化成社制u-810(二月桂酸二辛基锡)
[0081]
·
催化剂3:sigma-aldrich社制dabco 33-lv(dabco 33%丙二醇溶液)
[0082]
如下制造了试验样品。
[0083]
·
表面处理工序
[0084]
在各个构件(树脂基材)的表面涂布粘合剂之前,对各个构件实施了表面处理。该表面处理(火焰处理),使用arcogas社制的火焰处理装置(煤气流量:3.7l/min、空气流量100l/min),以处理速度:800mm/sec、到构件的距离20mm、通过次数1次而进行。
[0085]
此处,处理速度是指火焰处理的速度,具体是使火焰处理装置相对于构件移动的
速度(mm/sec)。到构件的距离是指火焰处理装置与构件之间的距离(mm)。通过次数是指扫过火焰的次数。例如,在将火焰从构件的一端至另一端扫过1次的情况下,通过次数为1次。
[0086]
·
粘合剂层形成工序
[0087]
在一种构件的实施了表面处理的表面上涂布上述氨基甲酸酯系粘合剂(粘合剂4a、4b、4c)而形成粘合剂层。
[0088]
·
贴合/养护工序
[0089]
进而,在所形成的粘合剂层的表面上贴合另一种构件的实施了表面处理的表面而成型叠层体。接下来,通过将该叠层体在23℃、50%rh的条件下静置3天来使粘合剂层固化,得到了各个试验样品。
[0090]
根据图7的解析结果可知,粘合剂的拉伸弹性模量越低,则解析模型产生的最大应力越小,该解析模型1m可承受的拉伸剪切载荷越高。可以认为其原因是如果为拉伸弹性模量高的粘合剂,则缓和所产生的应力的功能降低,应力集中于刚性更高的材料而产生破坏。需要说明的是,图7的解析结果与各个试验片的试验结果基本一致。
[0091]
附图标记说明
[0092]
1:粘合复合体
[0093]
1m(1ma、1mb、1mc):解析模型
[0094]
2:一种材料
[0095]
2a:一种构件
[0096]
3:另一种材料
[0097]
3a:另一种构件
[0098]
4(4a、4b、4c):粘合剂
[0099]
5:剪切试验机
[0100]
6a、6b:保持器
[0101]
7:运算装置。