首页 > 喷涂装置 专利正文
切晶粘晶膜、以及使用了该切晶粘晶膜的半导体封装及其制造方法与流程

时间:2022-02-24 阅读: 作者:专利查询

切晶粘晶膜、以及使用了该切晶粘晶膜的半导体封装及其制造方法与流程

本发明涉及切晶粘晶膜、以及使用了切晶粘晶膜的半导体封装及其制造方法。

背景技术

近年来,随着电子设备的小型化和高功能化、多功能化的发展,在搭载于其内部的半导体封装中高功能化、多功能化也不断发展,半导体晶片配线规则的微细化正在推进。与高功能化、多功能化相伴,正在普及将半导体芯片多层层积而成的堆栈型MCP(Multi Chip Package,多芯片封装),其搭载于移动电话、便携式音响设备用的内存封装等。另外,随着移动电话等的多功能化,封装的高密度化、高集成化也不断推进。与之相伴,半导体芯片的多层层积化正在进一步发展。

这种内存封装的制造过程中的配线基板与半导体芯片的粘接、以及半导体芯片间的粘接(所谓粘晶)使用膜状粘接剂(粘晶膜),随着芯片的多层层积化,也需要使粘晶膜薄膜化。另外,近年来,晶片配线规则的微细化正在推进,半导体元件表面更容易产生热。因此,为了使热容易散至封装外部,对于这些粘晶膜的高导热性的要求逐渐提高。

作为导热性粘晶膜,通常设计了使用导热性填料的膜。

作为能够用作导热性粘晶膜的材料,例如,专利文献1中记载了一种被用作粘晶膜的粘接片,其包含:平均粒径为2~9μm且比表面积为0.8~8.0m2/g的球状氧化铝填料;和以特定的重量含有比例包含高分子量成分和低分子量成分的树脂成分。根据专利文献1中记载的技术,通过使用该粘接片,对于被粘接体的凹凸部的埋入性提高,认为能够抑制空隙的产生。

另外,专利文献2中记载了下述内容:在粘晶层、粘合层和基材层依次层积而成的切晶粘晶膜中,通过控制粘晶层与粘合层的常温时和高温时的剥离力,可改善拾取不稳定性。

现有技术文献

专利文献

专利文献1:日本专利第6366228号公报

专利文献2:日本特开2010-232422号公报



技术实现要素:

发明所要解决的课题

对于使用了将导热性粘接剂层(导热性粘晶膜)和粘合剂层(切晶膜)层积而成的切晶粘晶膜的半导体晶片的切割~拾取工序,本发明人为了提高半导体装置的生产率而进行了反复研究。结果发现:通过切割将半导体晶片芯片化后,使用拾取筒夹(pickup collet),使导热性粘晶膜残留在芯片背面而将其从切晶膜剥离,并将该芯片热压接在配线基板上,在重复上述工序的过程中,拾取筒夹会蓄热;并且在使用已蓄热的拾取筒夹拾取芯片时,热也会经由导热系数高的粘晶膜传递至切晶膜,导致粘晶膜与切晶膜的剥离性降低,容易发生拾取不良。

本发明的课题在于提供一种切晶粘晶膜,其为导热性粘晶膜与切晶膜层积而成的切晶粘晶膜,在半导体加工中的拾取工序中,即便拾取筒夹蓄热,也不容易发生拾取不良,另外,也能够抑制热压接于配线基板时的空隙产生。

用于解决课题的手段

本发明人鉴于上述课题进行了反复深入的研究,结果发现,通过使粘晶膜的构成材料含有苯氧基树脂,制成包含无机填充剂的导热性粘晶膜,同时拾取工序中的与切晶膜的剥离性得到改善。进而,本发明人发现,通过下述粘晶膜能够以更高的水平解决上述课题,进而也能提高粘晶性,该粘晶膜采用常温(25℃)弹性模量显示出一定以上的值的物质作为苯氧基树脂,并与环氧树脂及其固化剂组合,以各特定量进行混配,控制成热固化后的导热系数提高至一定程度以上。

本发明基于这些技术思想进一步反复研究,由此完成了本发明。

本发明的上述课题可通过下述手段来解决。

[1]

一种切晶粘晶膜,其是粘接剂层与粘合剂层层积而成的切晶粘晶膜,其特征在于,

上述粘接剂层是含有环氧树脂(A)、环氧树脂固化剂(B)、苯氧基树脂(C)和无机填充材料(D)的膜状粘接剂的层,

上述苯氧基树脂(C)在25℃的弹性模量为500MPa以上,

上述粘接剂层中,上述苯氧基树脂(C)在上述环氧树脂(A)与上述苯氧基树脂(C)的各含量的合计中所占的比例为10~60质量%,

上述粘接剂层与上述粘合剂层在25~80℃范围内的剥离力为0.40N/25mm以下,

上述粘接剂层的热固化后的导热系数为1.0W/m·K以上。

[2]

如[1]所述的切晶粘晶膜,其特征在于,将上述粘接剂层以5℃/分钟的升温速度从25℃升温时,25~80℃范围内的固化前弹性模量G’为10kPa以上。

[3]

如[1]或[2]所述的切晶粘晶膜,其特征在于,将上述粘接剂层以5℃/分钟的升温速度从25℃升温时,120℃的熔融粘度在500~10000Pa·s的范围。

[4]

如[1]~[3]中任一项所述的切晶粘晶膜,其中,上述粘合剂层为能量射线固化性。

[5]

一种半导体封装的制造方法,其特征在于,其包括下述工序:

第1工序,按照使上述粘接剂层与半导体晶片的背面相接的方式,将[1]~[4]中任一项所述的切晶粘晶膜热压接设置在表面形成有至少1个半导体电路的半导体晶片的背面;

第2工序,同时切割上述半导体晶片和上述粘接剂层,由此在粘合剂层上得到具备上述半导体芯片和上述粘接剂层的带粘接剂层的半导体芯片;

第3工序,从上述粘接剂层去除上述粘合剂层,借由上述粘接剂层将上述带粘接剂层的半导体芯片与配线基板热压接;和

第4工序,将上述粘接剂层热固化。

[6]

一种半导体封装,其特征在于,其是半导体芯片与配线基板、或者半导体芯片间通过[1]~[4]中任一项所述的切晶粘晶膜所具有的粘接剂层的热固化体粘接而成的。

本发明中,使用“~”表示的数值范围是指包括在“~”前后记载的数值作为下限值和上限值的范围。

本发明中,(甲基)丙烯酸是指丙烯酸和甲基丙烯酸中的一者或两者。关于(甲基)丙烯酸酯也相同。

本发明中,各成分分别可以使用1种,也可以将2种以上混合使用。

发明效果

本发明的切晶粘晶膜是将导热性粘晶膜与切晶膜层积而成的,在半导体加工中的拾取工序中,即便拾取筒夹成为已蓄热的状态,也不容易发生拾取不良,另外粘晶性也优异。

附图说明

图1是示出本发明的半导体封装的制造方法的第1工序的一个优选实施方式的示意性纵截面图。

图2是示出本发明的半导体封装的制造方法的第2工序的一个优选实施方式的示意性纵截面图。

图3是示出本发明的半导体封装的制造方法的第3工序的一个优选实施方式的示意性纵截面图。

图4是示出本发明的半导体封装的制造方法的连接键合引线的工序的一个优选实施方式的示意性纵截面图。

图5是示出本发明的半导体封装的制造方法的多层层积实施方式例的示意性纵截面图。

图6是示出本发明的半导体封装的制造方法的另一多层层积实施方式例的示意性纵截面图。

图7是示出通过本发明的半导体封装的制造方法所制造的半导体封装的一个优选实施方式的示意性纵截面图。

具体实施方式

[切晶粘晶膜]

本发明的切晶粘晶膜是粘接剂层(粘晶膜)与粘合剂层(切晶膜)层积而成的。本发明的切晶粘晶膜能够为在基材(也称为基材膜)上依次设有粘合剂层和粘接剂层的方式,也可以在粘接剂层上设有剥离膜。另外,切晶膜和粘晶膜也优选如切晶粘晶膜的制作中记载的那样为特定的形状。

本发明的切晶粘晶膜的粘接剂层是含有环氧树脂(A)、环氧树脂固化剂(B)、苯氧基树脂(C)和无机填充材料(D)的膜状粘接剂的层。

构成该粘接剂层的苯氧基树脂(C)的常温(25℃)弹性模量为500MPa以上,粘接剂层中,苯氧基树脂(C)在环氧树脂(A)与苯氧基树脂(C)的各含量的合计中所占的比例为10~60质量%。

另外,本发明的切晶粘晶膜中,粘接剂层与粘合剂层之间的剥离力(固化前剥离力)在25~80℃的范围内为0.40N/25mm以下。另外,粘接层的热固化后的导热系数为1.0W/m·K以上。

依次对构成本发明的切晶粘晶膜的各层的方式进行说明。

<粘接剂层>

构成本发明的切晶粘晶膜的粘接剂层至少含有环氧树脂(A)、环氧树脂固化剂(B)、苯氧基树脂(C)和无机填充材料(D)。

(环氧树脂(A))

上述环氧树脂(A)只要是具有环氧基的热固化型的树脂,就可以没有特别限制地使用,可以为液体、固体或半固体中的任一种。本发明中,液体是指软化点小于25℃,固体是指软化点为60℃以上,半固体是指软化点处于上述液体的软化点与固体的软化点之间(25℃以上且小于60℃)。作为本发明中使用的环氧树脂(A),从获得能够在适宜的温度范围(例如60~120℃)达到低熔融粘度的膜状粘接剂的方面考虑,优选软化点为100℃以下。需要说明的是,本发明中,软化点是通过软化点试验(环球式)法(测定条件:依照JIS-2817)测得的值。

在本发明中使用的环氧树脂(A)中,从固化体的交联密度变高、结果所混配的无机填充剂(D)彼此的接触概率变高且接触面积变大、由此获得更高的导热系数的方面考虑,环氧当量优选为500g/eq以下、更优选为150~450g/eq。需要说明的是,本发明中,环氧当量是指包含1当量的环氧基的树脂的克数(g/eq)。

环氧树脂(A)的重均分子量通常优选小于10,000、更优选为5,000以下。下限值没有特别限制,实际为300以上。

重均分子量是由GPC(凝胶渗透色谱)分析得到的值。

作为环氧树脂(A)的骨架,可以举出苯酚酚醛清漆型、邻甲酚酚醛清漆型、甲酚酚醛清漆型、双环戊二烯型、联苯型、芴双酚型、三嗪型、萘酚型、萘二酚型、三苯甲烷型、四苯基型、双酚A型、双酚F型、双酚AD型、双酚S型、三羟甲基甲烷型等。其中,从获得树脂的结晶性低、且具有良好外观的膜状粘接剂的方面考虑,优选为三苯甲烷型、双酚A型、甲酚酚醛清漆型、邻甲酚酚醛清漆型。

本发明中所用的粘接剂层中(粘接剂层形成用组合物的固体成分(除溶剂外的总量)中),环氧树脂(A)的含量优选为3~30质量%、更优选为5~30质量%。通过使含量为上述优选的下限值以上,能够进一步提高膜状粘接剂的导热系数。另一方面,通过为上述优选的上限值以下,可抑制低聚物成分的生成,在略微的温度变化时能够难以发生膜状态(膜粘性等)的变化。

(环氧树脂固化剂(B))

作为上述环氧树脂固化剂(B),可以使用胺类、酸酐类、多元酚类等任意的固化剂。本发明中,从制成下述保存稳定性高的粘接剂层的方面考虑,优选使用潜在性固化剂,对于该粘接剂层来说,能够使包含上述环氧树脂(A)和后述苯氧基树脂(C)的粘接剂层在所期望的温度范围为低熔融粘度,并且在超过某一温度的高温下发挥出固化性,具有快速固化性,进而能够在室温下长期保存。

作为潜在性固化剂,可以举出双氰胺化合物、咪唑化合物、固化催化剂复合系多元酚化合物、酰肼化合物、三氟化硼-胺络合物、胺酰亚胺化合物、多元胺盐、以及它们的改性物或微胶囊型潜在性固化剂。从具有更优异的潜在性(室温下的稳定性优异、并且通过加热发挥出固化性的性质)、且固化速度更快的方面考虑,更优选使用咪唑化合物。

它们可以单独使用1种,也可以将2种以上组合使用。

环氧树脂固化剂(B)相对于环氧树脂(A)100质量份的含量优选为0.5~100质量份、更优选为1~80质量份。通过使含量为上述优选的下限值以上,能够进一步缩短固化时间,另一方面,通过为上述优选的上限值以下,能够抑制过量的固化剂残留在膜状粘接剂中。结果能够抑制残留固化剂吸附水分,实现半导体装置的可靠性提高。

(苯氧基树脂(C))

上述苯氧基树脂(C)的常温(25℃)弹性模量为500MPa以上。上述苯氧基树脂(C)的常温(25℃)弹性模量优选为2000MPa以下。通过使用具有这种弹性模量的苯氧基树脂,能够以更高的水平实现粘晶性与拾取性的兼顾。

常温(25℃)弹性模量(本发明中也称为“25℃的弹性模量”)可以通过后述实施例中记载的方法来确定。需要说明的是,关于粘接剂层含有2种以上的苯氧基树脂时的常温(25℃)弹性模量,可以使用以构成粘接剂层的混合比例混配苯氧基树脂所制作的膜作为后述实施例中记载的方法中的常温弹性模量测定用的苯氧基树脂膜,由此来确定。关于上述常温(25℃)弹性模量,在将单位设为MPa时有效至个位。

上述苯氧基树脂(C)的重均分子量通常为10000以上。上限值没有特别限制,实际为5000000以下。其中,更优选10000~100000。

上述苯氧基树脂(C)的重均分子量通过利用GPC[凝胶渗透色谱(Gel Permeation Chromatography)]的聚苯乙烯换算求出。

上述苯氧基树脂(C)的玻璃化转变温度(Tg)优选小于120℃、更优选小于100℃、更优选小于90℃。下限值优选为0℃以上、更优选为10℃以上。

上述苯氧基树脂(C)的玻璃化转变温度是以0.1℃/分钟的升温速度利用DSC(差示扫描量热仪)测得的玻璃化转变温度。

本发明中使用的粘接剂层含有至少一种苯氧基树脂作为苯氧基树脂(C)。

需要说明的是,本发明中,关于环氧树脂(A)和苯氧基树脂(C),分别将环氧当量(每1当量的环氧基的树脂的质量)为500g/eq以下的树脂分类为环氧树脂(A),将环氧当量超过500g/eq的树脂分类为苯氧基树脂(C)。

苯氧基树脂(C)可以通过双酚或联苯酚化合物与环氧氯丙烷之类的环氧卤丙烷的反应、液态环氧树脂与双酚或联苯酚化合物的反应而获得。

在任一反应中,作为双酚或联苯酚化合物,优选下述通式(A)所示的化合物。

【化1】

通式(A)

通式(A)中,La表示单键或二价连接基团,Ra1和Ra2各自独立地表示取代基。ma和na各自独立地表示0~4的整数。

La中,二价连接基团优选为亚烷基、亚苯基、-O-、-S-、-SO-、-SO2-或亚烷基与亚苯基组合而成的基团。

亚烷基的碳原子数优选为1~10、更优选为1~6、进一步优选为1~3、特别优选为1或2、最优选为1。

亚烷基优选-C(Rα)(Rβ)-所示的基团。此处,Rα和Rβ各自独立地表示氢原子、烷基、芳基。Rα和Rβ可以相互键合而形成环。Rα和Rβ优选为氢原子或烷基(例如,甲基、乙基、异丙基、正丙基、正丁基、异丁基、己基、辛基、2-乙基己基)。其中,亚烷基优选为-CH2-、-CH(CH3)或-C(CH3)2-,更优选为-CH2-、-CH(CH3),进一步优选为-CH2-。

亚苯基的碳原子数优选为6~12、更优选为6~8、进一步优选为6。亚苯基可以举出例如对亚苯基、间亚苯基、邻亚苯基,优选为对亚苯基或间亚苯基。

作为亚烷基与亚苯基组合而成的基团中的亚烷基和亚苯基,可以分别优选应用上述亚烷基和亚苯基的记载内容。

作为亚烷基与亚苯基组合而成的基团,优选为亚烷基-亚苯基-亚烷基,更优选为-C(Rα)(Rβ)-亚苯基-C(Rα)(Rβ)-。

Rα和Rβ键合形成的环优选为5元环或6元环,更优选为环戊烷环或环己烷环,进一步优选为环己烷环。

La优选为单键、亚烷基、-O-或-SO2-,更优选为亚烷基。

Ra1和Ra2优选为烷基、芳基、烷氧基、烷硫基或卤原子,更优选为烷基、芳基或卤原子,进一步优选为烷基。

ma和na优选为0~2的整数,更优选为0或1、进一步优选为0。

双酚或联苯酚化合物可以举出例如双酚A、双酚AD、双酚AP、双酚AF、双酚B、双酚BP、双酚C、双酚E、双酚F、双酚G、双酚M、双酚S、双酚P、双酚PH、双酚TMC、双酚Z、或4,4’-联苯酚、2,2’-二甲基-4,4’-联苯酚、2,2’,6,6’-四甲基-4,4’-联苯酚、Cardo骨架型双酚等,优选选自双酚A、双酚AD、双酚C、双酚E、双酚F和4,4’-联苯酚,更优选选自双酚A、双酚E和双酚F,特别优选为双酚A。

作为上述液态环氧树脂,优选为脂肪族二醇化合物的二缩水甘油醚,更优选为下述通式(B)所示的化合物。

【化2】

通式(B)

通式(B)中,X表示亚烷基,nb是指平均重复数,表示1~10。

亚烷基的碳原子数优选为2~10、更优选为2~8、进一步优选为3~8、特别优选为4~6、最优选为6。

可以举出例如亚乙基、亚丙基、亚丁基、亚戊基、亚己基、亚辛基,优选为亚乙基、三亚甲基、四亚甲基、五亚甲基、七亚甲基、六亚甲基或八亚甲基。

nb优选为1~6、更优选为1~3、进一步优选为1。

此处,在nb为2~10的情况下,X优选为亚乙基或亚丙基,进一步优选为亚乙基。

作为二缩水甘油醚中的脂肪族二醇化合物,可以举出乙二醇、丙二醇、二乙二醇、三乙二醇、聚乙二醇、1,3-丙二醇、1,4-丁二醇、1,5-庚二醇、1,6-己二醇、1,7-戊二醇、1,8-辛二醇。

在上述反应中,双酚或联苯酚化合物、脂肪族二醇化合物各自可以为单独进行反应而得到的苯氧基树脂,也可以为混合两种以上进行反应而得到的苯氧基树脂。可以举出例如1,6-己二醇的二缩水甘油醚与双酚A和双酚F的混合物的反应。

本发明中,苯氧基树脂(C)优选为通过液态环氧树脂与双酚或联苯酚化合物的反应而得到的苯氧基树脂,更优选为具有下述通式(I)所示的重复单元的苯氧基树脂。

【化3】

通式(I)

通式(I)中,La、Ra1、Ra2、ma和na与通式(A)中的La、Ra1、Ra2、ma和na含义相同,优选的范围也相同。X和nb与通式(B)中的X和nb含义相同,优选的范围也相同。

本发明中,在这些之中,优选双酚F与1,6-己二醇的二缩水甘油醚的聚合物。

另外,少量残存于苯氧基树脂(C)中的环氧基的量以环氧当量计优选超过5000g/eq。

苯氧基树脂(C)可以通过上述方法合成,或者也可以使用市售品。作为市售品,可以举出例如1256(双酚A型苯氧基树脂、三菱化学株式会社制造)、YP-50(双酚A型苯氧基树脂、新日化Epoxy制造株式会社制造)、YP-70(双酚A/F型苯氧基树脂、新日化Epoxy制造株式会社制造)、FX-316(双酚F型苯氧基树脂、新日化Epoxy制造株式会社制造)、FX-280S(Cardo骨架型苯氧基树脂、新日化Epoxy制造株式会社制造)、4250(双酚A型/F型苯氧基树脂、三菱化学株式会社制造)等。另外,也可以优选使用FX-310(低弹性高耐热型苯氧基树脂、新日化Epoxy制造株式会社制造)等低弹性高耐热型苯氧基树脂。

在粘接剂层中,苯氧基树脂(C)在环氧树脂(A)与苯氧基树脂(C)的各含量的合计中所占的比例为10~60质量%、也优选为15~50质量%、也更优选为18~45质量%。

(无机填充剂(D))

上述无机填充剂(D)只要是具有导热性的无机填充剂就没有特别限制。无机填充剂(D)对粘接剂层赋予导热性。

上述无机填充剂(D)是由导热性材料构成的颗粒或由导热性材料被覆表面而成的颗粒,这些导热性材料的导热系数优选为12W/m·K以上、更优选为30W/m·K以上。

若上述导热性材料的导热系数为上述优选的下限值以上,则能够减少为了获得目标导热系数而混配的无机填充剂(D)的量,能够抑制粘接剂层的熔融粘度的上升,进一步提高压接在基板时对于基板的凹凸部的埋入性。结果能够更可靠地抑制空隙的产生。

本发明中,上述导热性材料的导热系数是指25℃的导热系数,可以使用各材料的文献值。在文献中无记载的情况下,例如,若导热性材料为陶瓷,则可替用根据JIS R1611所测得的值,若导热性材料为金属,则可替用根据JIS H 7801所测得的值。

作为无机填充剂(D),例如可以举出导热性的陶瓷,优选可以举出氧化铝颗粒(导热系数:36W/m·K)、氮化铝颗粒(导热系数:150~290W/m·K)、氮化硼颗粒(导热系数:60W/m·K)、氧化锌颗粒(导热系数:54W/m·K)、氮化硅填料(导热系数:27W/m·K)、碳化硅颗粒(导热系数:200W/m·K)和氧化镁颗粒(导热系数:59W/m·K)。

特别是,从具有高导热系数、以及分散性、获得容易性的方面考虑,优选氧化铝颗粒。另外,氮化铝颗粒、氮化硼颗粒与氧化铝颗粒相比具有更高的导热系数,从该方面考虑是优选的。本发明中,其中优选氧化铝颗粒和氮化铝颗粒。

另外,也可以举出由具有导热性的金属被覆了表面的颗粒。例如,优选可以举出由银(导热系数:429W/m·K)、镍(导热系数:91W/m·K)和金(导热系数:329W/m·K)等金属被覆了表面的有机硅树脂颗粒和丙烯酸类树脂颗粒等。

特别是,从应力松弛性以及高耐热性的方面出发,优选由银被覆了表面的有机硅树脂颗粒。

无机填充剂(D)可以进行了表面处理或表面改性,作为用于实施这种表面处理或表面改性的化合物,可以举出硅烷偶联剂、磷酸或磷酸化合物或者表面活性剂等。除本说明书中记载的事项以外,例如也可以应用国际公开第2018/203527号中的导热填料的项或国际公开第2017/158994号的氮化铝填充剂的项中的硅烷偶联剂、磷酸或磷酸化合物和表面活性剂的记载。

作为将无机填充剂(D)混配到环氧树脂(A)、环氧树脂固化剂(B)和苯氧基树脂(C)等树脂成分中的方法,可以使用:将粉体状的无机填充剂和根据需要的硅烷偶联剂、磷酸或磷酸化合物、表面活性剂直接混配的方法(整体掺混法);或者将利用硅烷偶联剂、磷酸或磷酸化合物、表面活性剂等表面处理剂进行了处理的无机填充剂分散于有机溶剂中,以浆料状无机填充剂的形式进行混配的方法。

另外,作为利用硅烷偶联剂对无机填充剂(D)进行处理的方法没有特别限定,可以举出:在溶剂中混合无机填充剂(D)和硅烷偶联剂的湿式法;在气相中对无机填充剂(D)和硅烷偶联剂进行处理的干式法;上述整体掺混法;等。

特别是,氮化铝颗粒虽然有助于高导热化,但容易因水解而生成铵离子,因此优选与吸湿率小的酚树脂合用、或通过表面改性来抑制水解。作为氮化铝颗粒的表面改性方法,特别优选下述方法:在表面层设置氧化铝的氧化物层来提高耐水性,利用磷酸或磷酸化合物进行表面处理来提高与树脂的亲和性。

也优选利用硅烷偶联剂对无机填充剂(D)的表面进行表面处理。

另外,也优选进一步合用离子捕获剂。

硅烷偶联剂是在硅原子上键合有至少1个烷氧基、芳氧基之类的水解性基团的化合物,除此以外,也可以键合烷基、烯基、芳基。烷基优选为取代有氨基、烷氧基、环氧基或(甲基)丙烯酰氧基的烷基,更优选为取代有氨基(优选苯基氨基)、烷氧基(优选环氧丙氧基)或(甲基)丙烯酰氧基的烷基。

硅烷偶联剂可以举出例如2-(3,4-环氧环己基)乙基三甲氧基硅烷、3-环氧丙氧基丙基三甲氧基硅烷、3-环氧丙氧基丙基三乙氧基硅烷、3-环氧丙氧基丙基甲基二甲氧基硅烷、3-环氧丙氧基丙基甲基二乙氧基硅烷、二甲基二甲氧基硅烷、二甲基二乙氧基硅烷、甲基三甲氧基硅烷、甲基三乙氧基硅烷、苯基三甲氧基硅烷、苯基三乙氧基硅烷、N-苯基-3-氨基丙基三甲氧基硅烷、3-甲基丙烯酰氧基丙基甲基二甲氧基硅烷、3-甲基丙烯酰氧基丙基三甲氧基硅烷、3-甲基丙烯酰氧基丙基甲基二乙氧基硅烷、3-甲基丙烯酰氧基丙基三乙氧基硅烷等。

硅烷偶联剂、表面活性剂相对于无机填充剂(D)100质量份优选含有0.1~2.0质量份。

通过使硅烷偶联剂、表面活性剂的含量为上述优选的范围,能够抑制无机填充剂(D)的凝聚,并且能够抑制过量的硅烷偶联剂及表面活性剂在半导体组装加热工序(例如回焊工序)中挥发而导致的粘接界面处的剥离、空隙的产生,能够提高粘接性。

无机填充剂(D)的形状可以举出薄片状、针状、纤丝状、球状、鳞片状的形状,从高填充化和流动性的方面出发,优选球状颗粒。

另外,无机填充剂(D)的平均粒径(d50)优选为0.1~3.5μm。平均粒径(d50)是指所谓中值粒径,是通过激光衍射·散射法测定粒度分布,将颗粒的总体积设为100%时在累积分布中达到50%累积时的粒径。

关于本发明中使用的粘接剂层,无机填充剂(D)在环氧树脂(A)、环氧树脂固化剂(B)、苯氧基树脂(C)和无机填充剂(D)的各含量的合计中所占的比例为30~70体积%。若上述无机填充剂(D)的含有比例为上述下限值以上,则能够对膜状粘接剂赋予所期望的导热系数和熔融粘度,能够获得从半导体封装散热的效果,也能够抑制膜状粘接剂的溢出不良。另外,若为上述上限值以下,则能够对膜状粘接剂赋予所期望的熔融粘度,能够抑制空隙的产生。另外,也能够缓和热变化时半导体封装中产生的内部应力,也能够提高粘接力。

无机填充剂(D)在成分(A)~(D)的各含量的合计中所占的比例优选为20~60体积%、更优选为20~50体积%。

上述无机填充剂(D)的含量(体积%)可以由各成分(A)~(D)的含有质量和比重算出。

(其他成分)

除了环氧树脂(A)、环氧树脂固化剂(B)、苯氧基树脂(C)和无机填充剂(D)以外,本发明中使用的粘接剂层也可以在不损害本发明效果的范围内含有高分子化合物。

作为高分子化合物,可以举出例如天然橡胶、丁基橡胶、异戊二烯橡胶、氯丁橡胶、硅酮橡胶、乙烯-乙酸乙烯酯共聚物、乙烯-(甲基)丙烯酸共聚物、乙烯-(甲基)丙烯酸酯共聚物、聚丁二烯树脂、聚碳酸酯树脂、热塑性聚酰亚胺树脂、6-尼龙或6,6-尼龙等聚酰胺树脂、(甲基)丙烯酸类树脂、聚对苯二甲酸乙二醇酯和聚对苯二甲酸丁二醇酯等聚酯树脂、聚酰胺酰亚胺树脂、氟树脂等。这些高分子化合物可以单独使用,或者将两种以上组合使用。

另外,本发明中使用的粘接剂层也可以进一步含有离子捕捉剂(ion trapping agent)、固化催化剂、粘度调节剂、抗氧化剂、阻燃剂、着色剂等。例如,可以包含国际公开第2017/158994号的其他添加物。

环氧树脂(A)、环氧树脂固化剂(B)、苯氧基树脂(C)和无机填充剂(D)的合计含量在本发明中使用的粘接剂层中所占的比例例如能够为60质量%以上、优选为70质量%以上、进一步优选为80质量%以上、也可以为90质量%以上。另外,上述比例可以为100质量%、也可以为95质量%以下。

(粘接剂层的特性)

-热固化后的导热系数-

本发明中使用的粘接剂层在热固化后导热系数为1.0W/m·K以上。导热系数优选为1.4W/m·K以上。若导热系数小于上述下限值,则具有难以向封装外部释放所产生的热的倾向。通过使本发明的导热性膜状粘接剂在热固化后发挥出这种优异的导热系数,使本发明的导热性膜状粘接剂与半导体晶片或配线基板等被粘接体密合并进行热固化,由此能够获得向半导体封装外部的散热效率提高的半导体封装。

导热系数的上限没有特别限定,通常为30W/m·K以下。

此处,导热系数的测定中的热固化后是指粘接剂层的固化完成的状态。具体而言,是指以10℃/分钟的升温速度进行DSC(差示扫描量热计)测定时反应热峰消失的状态。

本发明中,这种热固化后的粘接剂层的导热系数是指,使用导热系数测定装置(商品名:HC-110、英弘精机株式会社制造),通过热流计法(依照JIS-A1412)测定导热系数所得到的值。具体而言,可以参照实施例中记载的测定方法。关于上述导热系数,在将单位设为W/m·K时有效至小数点后1位。

除了无机填充剂(D)的含量以及无机填充剂(D)的种类以外,导热系数也可以根据环氧树脂(A)、环氧树脂固化剂(B)和苯氧基树脂(C)等共存的化合物或树脂的种类及其含量而调整至上述范围。关于这一点,下述固化前弹性模量及熔融粘度也是相同的。

-固化前弹性模量-

对于本发明中使用的粘接剂层来说,从提高拾取性的方面出发,将热固化前的粘接剂层以5℃/分钟的升温速度从25℃升温时,25~80℃范围内的固化前弹性模量G’优选为10kPa以上。另外,在上述测定条件下,25℃的固化前弹性模量优选为400kPa以上、更优选为450kPa以上、进一步优选为500kPa以上、也优选为600kPa以上。另外,在上述测定条件下,80℃的固化前弹性模量优选为12kPa以上、也更优选为15kPa以上、也进一步优选为20kPa以上。

固化前弹性模量G’可以通过后述实施例中记载的方法来确定。关于上述固化前弹性模量G’,在将单位设为kPa时有效至个位。

本发明中,热固化前的粘接剂层是指,在粘接剂层形成后,未暴露于25℃以上的温度条件下的粘接剂层。本发明的切晶粘晶膜通常保存于10℃以下的温度条件下,因此,上述热固化前的粘接剂层通常是指,在形成粘接剂层后保存(保管)于10℃以下的温度下的粘接剂层。

(熔融粘度)

对于本发明中使用的粘接剂层来说,从提高粘晶性的方面出发,将热固化前的粘接剂层以5℃/分钟的升温速度从25℃升温时,120℃的熔融粘度优选在500~10000Pa·s的范围、更优选在1000~10000Pa·s的范围、进一步优选在1500~9200Pa·s的范围。

熔融粘度可以通过后述实施例中记载的方法来确定。关于上述熔融粘度,在将单位设为Pa·s时有效至十位。

(粘接剂层的形成)

关于本发明中使用的粘接剂层,可以制备含有粘接剂层构成成分的粘接剂层形成用组合物(清漆),将该组合物涂布到经脱模处理的剥离膜上,使其干燥而形成。粘接剂层形成用组合物通常含有溶剂。

粘接剂层的厚度优选为200μm以下、更优选为100μm以下、进一步优选为50μm以下、也优选为30μm以下、也优选为20μm以下。粘接剂层的厚度通常为1μm以上、也优选为2μm以上、也可以为4μm以上。

膜状粘接剂的厚度可以通过接触·线性测量计方式(台式接触式厚度测量装置)进行测定。

作为经脱模处理的剥离膜,只要作为所得到的膜状粘接剂的覆盖膜发挥功能即可,可以适当采用公知的剥离膜。可以举出例如经脱模处理的聚丙烯(PP)、经脱模处理的聚乙烯(PE)、经脱模处理的聚对苯二甲酸乙二醇酯(PET)。作为涂布方法,可以适当采用公知的方法,可以举出例如使用辊式刮刀涂布机、凹版涂布机、模涂机、反向涂布机等的方法。

粘接剂层优选与晶片贴合的面的算术平均粗糙度Ra为3.0μm以下,更优选与被粘接体贴合的任一侧的表面的算术平均粗糙度Ra也为3.0μm以下。

上述算术平均粗糙度Ra更优选为2.0μm以下、进一步优选为1.5μm以下。下限值没有特别限制,实际为0.1μm以上。

<粘合剂层>

构成本发明的切晶粘晶膜的粘合剂层及其形成方法可以适当应用用作切晶膜(切晶带)的一般构成、方法。作为构成粘合剂层的粘合剂,可以适当使用粘合膜用途中使用的一般粘合剂、例如丙烯酸系粘合剂、橡胶系粘合剂等。其中,粘合剂层优选为能量射线固化性。

作为上述丙烯酸系粘合剂,例如可以使用由(甲基)丙烯酸及其酯构成的树脂、(甲基)丙烯酸及其酯和能够与其共聚的不饱和单体(例如乙酸乙烯酯、苯乙烯、丙烯腈等)的共聚物等。另外,也可以将两种以上的这些树脂混合使用。其中,作为构成成分,优选包含选自(甲基)丙烯酸甲酯、(甲基)丙烯酸乙基己酯和(甲基)丙烯酸丁酯中的1种以上与选自(甲基)丙烯酸羟乙酯和乙酸乙烯酯中的1种以上的共聚物。由此,与被粘接体的密合性及粘合性的控制变得容易。

为了使本发明中使用的粘合剂层为能量射线固化性,可以向构成粘合剂层的聚合物中导入聚合性基团(例如碳-碳不饱和键),或者在粘合剂层中混配聚合性单体。该聚合性单体优选具有2个以上(优选3个以上)的聚合性基团。即,能量射线固化性是指具备通过能量射线的照射而固化的特性。

作为能量射线,可以举出例如紫外线、电子射线等。

作为本发明中使用的粘合剂层,可以参照例如日本特开2010-232422号公报、日本专利第2661950号公报、日本特开2002-226796号公报、日本特开2005-303275号公报等的记载。

粘合剂层的厚度优选为1~200μm、更优选为2~100μm、进一步优选为3~50μm、也优选为5~30μm。

本发明的切晶粘晶膜中,粘接剂层与粘合剂层之间在25~80℃范围内的剥离力为0.40N/25mm以下。在粘合剂层为能量射线固化性的情况下,该剥离力为能量射线照射后的粘接剂层与粘合剂层之间的剥离力。粘接剂层与粘合剂层之间在25℃的剥离力优选为0.30N/25mm以下、更优选为0.20N/25mm以下。另外,粘接剂层与粘合剂层之间在80℃的剥离力优选为0.35N/25mm以下。

上述剥离力可以通过实施例中记载的方法来确定。关于上述剥离力,将单位设为N/25mm时有效至小数点后两位。

<切晶粘晶膜的制作>

关于本发明的切晶粘晶膜的制作方法,只要能够形成将粘接剂层与粘合剂层层积而成的结构就没有特别限制。

例如,将包含粘合剂的涂布液涂布到经脱模处理的剥离衬垫上并进行干燥而形成粘合剂层,将粘合剂层与基材膜贴合,由此制作依次层积有基材膜、粘合剂层、剥离衬垫的膜(切晶膜)。此外,将粘接剂层形成用组合物涂布到剥离膜上并进行干燥,在剥离膜上形成粘接剂层,由此制作粘晶膜。接着,按照将剥离衬垫剥离后露出的粘合剂层与粘接剂层相接的方式使切晶膜与粘晶膜贴合,由此可以得到依次层积有基材膜、粘合剂层、粘接剂层、剥离膜的切晶粘晶膜。

上述切晶膜与粘晶膜的贴合优选在加压条件下进行。

在上述切晶膜与粘晶膜的贴合中,切晶膜的形状没有特别限制,只要能够覆盖环形框的开口部即可,优选为圆形,粘晶膜的形状没有特别限制,只要能够覆盖晶片的背面即可,优选为圆形。切晶膜优选为大于粘晶膜且具有粘合剂层在粘接剂层的周围露出的部分的形状。如此,优选将剪裁成所期望的形状的切晶膜和粘晶膜贴合。

如上制作的切晶粘晶膜在使用时将剥离膜剥离后再使用。

[半导体封装及其制造方法]

接着,参照附图对本发明的半导体封装及其制造方法的优选实施方式进行详细说明。需要说明的是,在下述说明和附图中,对相同或相当的要素标注相同的符号,以省略重复的说明。图1~图7是示出本发明的半导体封装的制造方法的各工序的一个优选实施方式的示意性纵截面图。

本发明的半导体封装的制造方法中,首先,作为第1工序,如图1所示,在表面形成有至少1个半导体电路的半导体晶片1的背面(即,半导体晶片1的未形成半导体电路的面),以粘接剂层的一侧热压接本发明的切晶粘晶膜(即,按照粘接剂层与半导体晶片的背面相接的方式进行热压接),在半导体晶片1依次设置粘接剂层2和粘合剂层3。图1中所示的粘接剂层2小于粘合剂层3,但两层的尺寸(面积)可以根据目的适当设定。关于热压接的条件,在环氧树脂(A)实际上不发生热固化的温度下进行。例如,可以举出70℃、压力0.3MPa的条件。

作为半导体晶片1,可以适当使用在表面形成有至少1个半导体电路的半导体晶片,可以举出例如硅晶片、SiC晶片、GaAs晶片、GaN晶片。为了将本发明的切晶粘晶膜设置在半导体晶片1的背面,例如可以适当使用辊式层压机、手动层压机之类的公知的装置。

接着,作为第2工序,如图2所示,同时切割半导体晶片1和粘接剂层2,由此在粘合剂层3上得到具备半导体芯片4和粘接剂层2的带粘接剂层的半导体芯片5。作为切晶带(未图示)没有特别限制,可以适当使用公知的切晶带。此外,切割所用的装置(未图示)也没有特别限制,可以适当使用公知的切割装置。

接着,作为第3工序,根据需要利用能量射线将粘合剂层固化而使粘合力降低,通过拾取等将粘合剂层3从粘接剂层2去除后,如图3所示,隔着粘接剂层2将带粘接剂层的半导体芯片5与配线基板6热压接,将带粘接剂层的半导体芯片5安装至配线基板6。作为配线基板6,可以适当使用在表面形成有半导体电路的基板,可以举出例如印刷电路基板(PCB)、各种引线框架、和在基板表面搭载有电阻元件或电容器等电子部件的基板。

作为这种将带粘接剂层的半导体芯片5安装至配线基板6的方法,没有特别限制,可以适当采用能够利用粘接剂层2使带粘接剂层的半导体芯片5粘接在配线基板6或搭载于配线基板6的表面上的电子部件的现有的方法。

接着,作为第4工序,使粘接剂层2热固化。作为热固化的温度,只要为粘接剂层2的热固化起始温度以上就没有特别限制,根据所使用的环氧树脂(A)、苯氧基树脂(C)和环氧固化剂(B)的种类而不同,并非一概而论,例如优选为100~180℃,从以更高温度固化时能够在短时间内固化的方面考虑,更优选为140~180℃。若温度小于热固化起始温度,则热固化无法进行,具有粘接剂层2的强度降低的倾向,另一方面,若超过上述上限,则具有在固化过程中粘接剂层2中的环氧树脂、固化剂或添加剂等挥发而容易发泡的倾向。另外,固化处理的时间例如优选为10~120分钟。

接着,本发明的半导体封装的制造方法中,如图4所示,优选经由键合引线7连接配线基板6和带粘接剂层的半导体芯片5。作为这样的连接方法没有特别限制,可以适当采用现有公知的方法,例如引线键合方式的方法、TAB(Tape Automated Bonding,卷带式自动接合)方式的方法等。

另外,也可以通过在搭载后的半导体芯片4的表面将另一半导体芯片4热压接、热固化,并再次利用引线键合方式与配线基板6连接,从而层积2个以上。例如,有如图5所示那样使半导体芯片错开而层积的方法;或者如图6所示那样通过使第2层之后的粘接剂层2变厚而一边埋入键合引线7一边层积的方法;等。

本发明的半导体封装的制造方法中,优选如图7所示通过封装树脂8将配线基板6与带粘接剂层的半导体芯片5封装,如此能够得到半导体封装9。作为封装树脂8没有特别限制,可以适当使用能够用于半导体封装的制造的公知的封装树脂。另外,作为利用封装树脂8的封装方法,也没有特别限制,可以适当采用公知的方法。

本发明的半导体封装是半导体芯片与配线基板、或者半导体芯片间通过本发明的切晶粘晶膜所具有的粘接剂层的热固化体粘接而成的。

作为本发明的半导体封装的一例,如图4和图7所示,可以举出具有下述结构的半导体封装9,该结构是半导体芯片4和配线基板6通过本发明的切晶粘晶膜所具有的粘接剂层的热固化体粘接而成的(图7中为将该结构封装的方式的半导体封装9)。另外,作为本发明的半导体封装的另一例,如图5和图6所示,可以举出具有下述结构的半导体封装9,该结构是除了半导体芯片4与配线基板6的粘接以外,半导体芯片4间也通过本发明的切晶粘晶膜所具有的粘接剂层的热固化体粘接而成的。

另外,通过在多层层积半导体芯片时的半导体芯片间的粘接中使用本发明的切晶粘晶膜中的粘接剂层,可得到具有下述结构的半导体封装,该结构是半导体芯片间通过本发明的切晶粘晶膜所具有的粘接剂层的热固化体粘接而成的。这种情况下,关于半导体芯片与配线基板的粘接,可以通过本发明的切晶粘晶膜所具有的粘接剂层的热固化体进行粘接(例如,图5和图6),也可以通过通常所用的粘接剂层作为导热性粘接剂层进行粘接。其中,优选通过本发明的切晶粘晶膜所具有的粘接剂层2的热固化体进行粘接。

需要说明的是,在具有图4~7中记载的结构的半导体封装9中,半导体芯片4与配线基板6之间、以及半导体芯片4之间的粘接剂层2以经热固化的状态存在,即作为粘接剂层的热固化体以将各部件粘接的状态存在。

实施例

以下,基于实施例和比较例来更具体地说明本发明,但本发明不限于下述实施例。另外,室温是指25℃,MEK为甲基乙基酮,PET为聚对苯二甲酸乙二醇酯。

(实施例1)

[1.粘合剂层(切晶膜)的制作]

(1)基材膜的制作

将低密度聚乙烯(LDPE、密度0.92g/cm3、熔点110℃)的树脂粒料在230℃熔融,使用挤出机成型为厚度70μm的长膜状。对所得到的膜照射100kGy的电子射线,制作出基材膜。

(2)粘合剂层的制作

制备出由丙烯酸丁酯50摩尔%、丙烯酸-2-羟乙酯45摩尔%和甲基丙烯酸5摩尔%构成的重均分子量为80万的共聚物。按照碘值为20的方式添加甲基丙烯酸-2-异氰酸根合乙酯,制备出玻璃化转变温度为-40℃、羟值为30mgKOH/g、酸值为5mgKOH/g的丙烯酸系共聚物。

接着,相对于上述制备的丙烯酸系共聚物100质量份,加入作为多异氰酸酯的Coronate L(商品名、Nippon Polyurethane制造)5质量份,加入作为光聚合引发剂的Esacure KIP 150(商品名、Lamberti公司制造)3质量份,将所得到的混合物溶解于乙酸乙酯中,搅拌而制备出粘合剂组合物。

接着,按照干燥后的厚度为20μm的方式,将该粘合剂组合物涂布到经脱模处理的聚对苯二甲酸乙二醇酯(PET)膜构成的剥离衬垫上,在110℃干燥3分钟而形成粘合剂层后,使上述制备的基材膜与粘合剂层贴合,制作出在基材膜上形成有粘合剂层的切晶膜。

[2.粘接剂层(粘晶膜)的制作]

将三苯甲烷型环氧树脂(商品名:EPPN-501H、重均分子量:1000、软化点:55℃、半固体、环氧当量:167g/eq、日本化药株式会社制造)56质量份、双酚A型环氧树脂(商品名:YD-128、重均分子量:400、软化点:小于25℃、液体、环氧当量:190g/eq、新日化Epoxy制造株式会社制造)49质量份、双酚A型苯氧基树脂(商品名:YP-50、重均分子量:70000、Tg:84℃、常温(25℃)弹性模量:1700MPa、新日化Epoxy制造株式会社制造)30质量份和MEK67质量份在1000ml的可拆式烧瓶中于温度110℃下加热搅拌2小时,得到树脂清漆。

接着,将该树脂清漆移至800ml的行星式混合机中,添加氧化铝填料(商品名:AO-502、株式会社Admatechs制造、平均粒径(d50):0.6μm)205质量份,加入咪唑型固化剂(商品名:2PHZ-PW、四国化成株式会社制造)8.5质量份、硅烷偶联剂(商品名:Sila-Ace S-510、JNC株式会社制造)3.0质量份,在室温下搅拌混合1小时后,进行真空脱泡而得到混合清漆。

接着,将所得到的混合清漆涂布到厚度38μm的经脱模处理的PET膜(剥离膜)上,在130℃加热干燥10分钟,制作出在剥离膜上形成有长300mm、宽200mm、厚10μm的粘接剂层的粘晶膜。厚度是通过上述方法测定的值。

[3.切晶粘晶膜的制作]

接着,将切晶膜剪裁成能够以覆盖环形框的开口部的方式进行贴合的圆形。另外,将粘晶膜剪裁成能够覆盖晶片背面的圆形。

使用辊式压制机,在负荷0.4MPa、速度1.0m/min的条件下,使从如上所述剪裁的切晶膜将剥离衬垫剥离后露出的粘合剂层与如上所述剪裁的粘晶膜的粘接剂层贴合,制作出切晶粘晶膜。该切晶粘晶膜中,切晶膜大于粘晶膜,且具有粘合剂层在粘接剂层的周围露出的部分。

(实施例2)

使用氧化铝填料(商品名:AO-502、株式会社Admatechs制造、平均粒径(d50):0.6μm)320质量份,除此以外与实施例1同样地制作出切晶粘晶膜。

(实施例3)

使用氧化铝填料(商品名:AO-502、株式会社Admatechs制造、平均粒径(d50):0.6μm)480质量份,除此以外与实施例1同样地制作出切晶粘晶膜。

(实施例4)

代替双酚A型苯氧基树脂而使用双酚A·F共聚型苯氧基树脂(商品名:YP-70、重均分子量:55000、Tg:72℃、常温(25℃)弹性模量:1400MPa、新日化Epoxy制造株式会社制造)30质量份,除此以外与实施例1同样地制作出切晶粘晶膜。

(实施例5)

代替双酚A型苯氧基树脂而使用低弹性高耐热型苯氧基树脂(商品名:FX-310、重均分子量:40000、Tg:110℃、常温(25℃)弹性模量:500MPa、新日化Epoxy制造株式会社制造)30质量份,除此以外与实施例1同样地制作出切晶粘晶膜。

(实施例6)

使用双酚A型苯氧基树脂(商品名:YP-50、重均分子量:70000、Tg:84℃、常温(25℃)弹性模量:1700MPa、新日化Epoxy制造株式会社制造)44质量份、氧化铝填料(商品名:AO-502、株式会社Admatechs制造、平均粒径(d50):0.6μm)350质量份,除此以外与实施例1同样地制作出切晶粘晶膜。

(实施例7)

使用双酚A型苯氧基树脂(商品名:YP-50、重均分子量:70000、Tg:84℃、常温(25℃)弹性模量:1700MPa、新日化Epoxy制造株式会社制造)70质量份、氧化铝填料(商品名:AO-502、株式会社Admatechs制造、平均粒径(d50):0.6μm)400质量份,除此以外与实施例1同样地制作出切晶粘晶膜。

(实施例8)

使用双酚A型苯氧基树脂(商品名:YP-50、重均分子量:70000、Tg:84℃、常温(25℃)弹性模量:1700MPa、新日化Epoxy制造株式会社制造)50质量份、银填料(商品名:AG-4-8F、株式会社DOWA电子制造、平均粒径(d50):2.0μm)360质量份,除此以外与实施例1同样地制作出切晶粘晶膜。

(实施例9)

使用双酚A型苯氧基树脂(商品名:YP-50、重均分子量:70000、Tg:84℃、常温(25℃)弹性模量:1700MPa、新日化Epoxy制造株式会社制造)50质量份、银填料(商品名:AG-4-8F、株式会社DOWA电子制造、平均粒径(d50):2.0μm)610质量份,除此以外与实施例1同样地制作出切晶粘晶膜。

(实施例10)

使用双酚A型苯氧基树脂(商品名:YP-50、重均分子量:70000、Tg:84℃、常温(25℃)弹性模量:1700MPa、新日化Epoxy制造株式会社制造)50质量份、银填料(商品名:AG-4-8F、株式会社DOWA电子制造、平均粒径(d50):2.0μm)950质量份,除此以外与实施例1同样地制作出切晶粘晶膜。

(比较例1)

使用双酚A型苯氧基树脂(商品名:YP-50、重均分子量:70000、Tg:84℃、常温(25℃)弹性模量:1700MPa、新日化Epoxy制造株式会社制造)10质量份、氧化铝填料(商品名:AO-502、株式会社Admatechs制造、平均粒径(d50):0.6μm)280质量份,除此以外与实施例1同样地制作出切晶粘晶膜。

(比较例2)

使用双酚A型苯氧基树脂(商品名:YP-50、重均分子量:70000、Tg:84℃、常温(25℃)弹性模量:1700MPa、新日化Epoxy制造株式会社制造)250质量份、氧化铝填料(商品名:AO-502、株式会社Admatechs制造、平均粒径(d50):0.6μm)800质量份,除此以外与实施例1同样地制作出切晶粘晶膜。

(比较例3)

使用双酚A型苯氧基树脂(商品名:YP-50、重均分子量:70000、Tg:84℃、常温(25℃)弹性模量:1700MPa、新日化Epoxy制造株式会社制造)250质量份、氧化铝填料(商品名:AO-502、株式会社Admatechs制造、平均粒径(d50):0.6μm)130质量份,除此以外与实施例1同样地制作出切晶粘晶膜。

(比较例4)

使用双酚F+1,6-己二醇二缩水甘油醚型苯氧基树脂(商品名:YX-7180、重均分子量:50000、Tg:15℃、常温(25℃)弹性模量:200MPa、三菱化学株式会社制造)30质量份、氧化铝填料(商品名:AO-502、株式会社Admatechs制造、平均粒径(d50):0.6μm)320质量份,除此以外与实施例1同样地制作出切晶粘晶膜。

(比较例5)

使用丙烯酸聚合物溶液(商品名:S-2060、重均分子量:500000、Tg:-23℃、常温(25℃)弹性模量:50MPa、固体成分25%(有机溶剂:甲苯)、东亚合成株式会社制造)120质量份(其中丙烯酸聚合物本身的混配量为30质量份)、氧化铝填料(商品名:AO-502、株式会社Admatechs制造、平均粒径(d50):0.6μm)320质量份,除此以外与实施例1同样地制作出切晶粘晶膜。

对于上述制作的各切晶粘晶膜,分别利用以下所示的方法实施固化前弹性模量、熔融粘度、剥离力、粘晶性评价、导热系数和连续拾取性的测定。

将所得到的结果与粘接剂层的组成一起归纳示于下述表1中。

<固化前弹性模量和熔融粘度的测定>

从上述制作的切晶粘晶膜切取长5.0cm×宽5.0cm大小的正方形,将切晶膜(粘合剂层和基材膜)与剥离膜剥离,层积所切取的试样,利用手动辊在载台70℃的热板上进行贴合,得到厚度为约1.0mm的粘接剂层的试验片。

对于该试验片,使用流变仪(RS6000、Haake公司制造),测定温度范围20~250℃、升温速度5℃/min下的粘性阻力的变化。由所得到的温度-粘性阻力曲线分别计算出在25℃和80℃的固化前弹性模量G’(kPa)与120℃的熔融粘度(Pa·s)。

<剥离力>

对于上述制作的切晶粘晶膜,利用紫外线照射装置(商品名:RAD-2000F/8、Lintec株式会社制造、照射量200mJ/cm2)从切晶膜(粘合剂层)侧照射紫外线,在室温和80℃的恒温槽中分别测定粘接剂层与切晶膜(粘合剂层和基材膜)的层间剥离强度。

测定条件:依照JIS Z 0237、180°剥离试验

测定装置:拉伸试验机(岛津制作所制造、型号:TCR1L型)

<粘晶性评价>

对于上述制作的切晶粘晶膜,首先将剥离膜剥离,利用手动层压机(商品名:FM-114、Technovision公司制造)在温度70℃、压力0.3MPa下粘接在假片硅晶片(8英寸大小、厚度100μm)的一个面上。接着,使用设置有双轴划片刀(Z1:NBC-ZH2050(27HEDD)、DISCO公司制造/Z2:NBC-ZH127F-SE(BC)、DISCO公司制造)的切割装置(商品名:DFD-6340、DISCO公司制造),按照形成尺寸10mm×10mm的正方形的方式从假片硅晶片侧实施切割,得到带粘接剂层的假片芯片。

接着,利用紫外线照射装置(商品名:RAD-2000F/8、Lintec株式会社制造、照射量200mJ/cm2)从晶片背面侧照射紫外线,利用粘片机(商品名:DB-800、株式会社日立高新技术制造)以120℃、压力0.1MPa(负荷400gf)、时间1.0秒的条件进行热压接,使上述带粘接剂层的假片芯片与引线框架基板(42Arroy系、凸版印刷株式会社制造)的安装面侧贴合。

对于热压接在基板上的带粘接剂层的假片芯片,使用超声波探伤装置(SAT)(Hitachi Power Solutions制造FS300III)观察粘接剂层与引线框架基板安装面的界面处有无空隙产生,基于下述评价基准进行粘晶性评价。本发明中,评价“B”以上为合格。

-评价基准-

A:所安装的24个假片芯片全未观察到空隙。

B:所安装的24个假片芯片中有1~5个芯片产生了空隙。

C:所安装的24个假片芯片中有6个以上的芯片产生了空隙。

<热固化后的导热系数>

从上述制作的切晶粘晶膜切取一边为50mm以上的方形片,将切晶膜(粘合剂层和基材膜)与剥离膜剥离,重叠切取的试样,得到厚度为5mm以上的粘接剂层层积体。

将该试样置于直径50mm、厚度5mm的圆盘状模具上,利用压缩加压成型机在温度150℃、压力2MPa的条件下加热10分钟并取出后,进一步在干燥机中在温度180℃下加热1小时,由此使粘接剂层热固化,得到直径50mm、厚度5mm的圆盘状试验片。

对于该试验片,使用导热系数测定装置(商品名:HC-110,英弘精机株式会社制造),通过热流计法(依照JIS-A1412)测定导热系数(W/(m·K))。

<连续拾取性评价>

对于上述制作的切晶粘晶膜,首先将剥离膜剥离,利用手动层压机(商品名:FM-114、Technovision公司制造)在温度70℃、压力0.3MPa下粘接在假片硅晶片(8英寸大小、厚度100μm)的一个面上。接着,使用设置有双轴划片刀(Z1:NBC-ZH2050(27HEDD)、DISCO公司制造/Z2:NBC-ZH127F-SE(BC)、DISCO公司制造)的切割装置(商品名:DFD-6340、DISCO公司制造),按照形成尺寸5mm×5mm的正方形的方式从假片硅晶片侧实施切割,得到带粘接剂层的假片芯片。

接着,利用紫外线照射装置(商品名:RAD-2000F/8、Lintec株式会社制造、照射量200mJ/cm2)从晶片背面侧照射紫外线,利用粘片机(商品名:DB-800、株式会社日立高新技术制造)以120℃、压力0.1MPa(负荷400gf)、时间1.0秒的条件从切晶膜(粘合剂层和基材膜)拾取上述带粘接剂层的假片芯片,按照与引线框架基板(42Arroy系、凸版印刷株式会社制造)的安装面侧贴合的方式进行热压接。连续地反复进行该拾取并热压接的工序,并基于下述评价基准进行连续拾取性评价。本发明中,评价“B”以上为合格。

-评价基准-

A:在连续地进行了拾取、热压接的96个假片芯片中,均未发现拾取失误、或切晶膜上的粘接剂层残留等不良情况。

B:在连续地进行了拾取、热压接的96个假片芯片中,发生了拾取失误、或切晶膜上的粘接剂层残留等不良情况的芯片为1~10个。

C:在连续地进行了拾取、热压接的96个假片芯片中,发生了拾取失误、或切晶膜上的粘接剂层残留等不良情况的芯片为11个以上。

<平均粒径(d50)的测定>

称量上述使用的各无机填充剂0.1g和MEK9.9g,对它们的混合物进行5分钟超声波分散处理,制备出测定用试样。对于该测定用试样,由通过激光衍射·散射法(型号:LMS-2000e、株式会社SEISHIN ENTERPRISE制造)测定的粒度分布的粒径的体积分数的累积曲线求出平均粒径(d50)。

<苯氧基树脂的常温(25℃)弹性模量>

在500ml的可拆式烧瓶中,将各种苯氧基树脂30质量份和MEK(甲基乙基酮)70质量份在温度110℃加热搅拌2小时,得到树脂清漆。

接着,将该树脂清漆涂布到厚度38μm的经脱模处理的PET膜(剥离膜)上,在130℃加热干燥10分钟,得到长300mm、宽200mm、厚100μm的苯氧基树脂膜。

将该苯氧基树脂膜切取成5mm×17mm的尺寸,使用动态粘弹性测定装置(商品名:Rheogel-E4000F、株式会社UBM制造),在测定温度范围0~100℃、升温速度5℃/min、以及频率1Hz的条件下进行测定,求出25℃的弹性模量的值。

需要说明的是,对于比较例5中使用的丙烯酸类树脂,也与苯氧基树脂同样地,根据上述方法求出25℃的弹性模量。

<苯氧基树脂的玻璃化转变温度(Tg)>

对于通过上述弹性模量的测定中记载的方法制作的苯氧基树脂膜,使用差示扫描量热计(型号:DSC7000、株式会社Hitachi High-Tech Science制造),以升温速度5℃/min的条件进行测定,将基线向吸热峰侧位移的温度作为玻璃化转变温度(Tg)进行测定。

<重均分子量>

对于各种苯氧基树脂,使用凝胶渗透色谱(型号:HLC-8320、东曹株式会社制造),将四氢呋喃用作洗脱液,在流速1ml/min、柱室的温度为40℃的条件下进行测定。重均分子量使用标准聚苯乙烯校正曲线算出。

需要说明的是,对于比较例5中使用的丙烯酸类树脂,也与苯氧基树脂同样地,根据上述方法求出25℃的弹性模量、玻璃化转变温度、重均分子量。

<表的注释>

粘接剂层的栏中的“-”是指不含有该成分。

由上述表1可知以下内容。

比较例1的切晶粘晶膜中,苯氧基树脂(C)在环氧树脂(A)与苯氧基树脂(C)的各含量的合计中所占的比例小于10质量%,80℃的粘接剂层与粘合剂层之间的剥离力超过0.40N/25mm。关于该比较例1的切晶粘晶膜,由于拾取筒夹的蓄热而使得在连续进行拾取时,96个芯片中的11个以上的芯片发生拾取不良,拾取性差。

比较例2和3的切晶粘晶膜中,苯氧基树脂(C)在环氧树脂(A)与苯氧基树脂(C)的各含量的合计中所占的比例超过60质量%。关于该比较例2和3的切晶粘晶膜,在热压接于配线基板时,24个芯片中的6个以上的芯片产生空隙,空隙产生的抑制不充分。另外,关于比较例3的切晶粘晶膜,热固化后的粘接剂层的导热系数低至小于1.0W/m·K,作为用于半导体封装的粘接剂的散热性也不充分。

比较例4的切晶粘晶膜中,苯氧基树脂(C)的25℃的弹性模量小于500MPa。另外,比较例5的切晶粘晶膜不含有苯氧基树脂而含有丙烯酸类树脂(25℃的弹性模量小于500MPa)。关于这些比较例4和5的切晶粘晶膜,由于拾取筒夹的蓄热而使得在连续进行拾取时,96个芯片中的11个以上的芯片发生拾取不良,拾取性差。

与此相对,本发明的实施例1~10的切晶粘晶膜中,半导体加工中的连续拾取性优异,即使拾取筒夹蓄热也难以发生拾取不良。另外,热压接于配线基板时空隙产生的抑制也优异。

本申请要求基于2020年3月13日在日本进行专利提交的日本特愿2020-044660的优先权,将其参照于此并将其内容作为本说明书记载内容的一部分引入。

符号说明

1 半导体晶片

2 粘接剂层

3 粘合剂层

4 半导体芯片

5 带膜状粘接剂的半导体芯片

6 配线基板

7 键合引线

8 封装树脂

9 半导体封装。