1.本发明实施例涉及智能家电技术领域,具体涉及一种衣物处理方法、装置、电子设备、及存储介质。
背景技术:2.随着生活水平的不断提高,智能家电已经进入千家万户,护理机、洗衣机、干衣机等衣物处理装置已成为居家生活的必需品。
3.随着物联网技术的不断发展,用于处理衣物上污渍的衣物处理装置可以进行预约处理、远程在线处理等各种便捷操作,但是在一键自动处理方面还存在一些不足之处,采用推荐的程序及其参数处理衣物后可能仍存在不干净的地方甚至洗坏衣物的情况。
技术实现要素:4.有鉴于此,本发明实施例提供一种衣物处理方法、装置、电子设备、及存储介质,以提升处理衣物污渍的效果。
5.本发明实施例的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本发明实施例的实践而习得。
6.在本公开的第一方面,本发明实施例提供了一种衣物处理方法,包括:
7.获取包含至少一件待处理衣物的多个图片;
8.根据所述多个图片确定各待处理衣物的至少一个子图像和材质;
9.根据各待处理衣物的至少一个子图像获取各待处理衣物上各污渍的种类;
10.根据各污渍的种类和所在的待处理衣物的材质,推荐处理程序和所述处理程序的参数,以控制污渍处理机根据所推荐的处理程序和所述处理程序的参数对所述待处理衣物进行处理。
11.于一实施例中,获取包含至少一件待处理衣物的多个图片包括:
12.控制所述污渍处理机的照明模组打开灯光;
13.控制所述污渍处理机的动力模组转动以翻转和抖散所述至少一件待处理衣物;
14.控制所述污渍处理机的相机模组拍摄所述至少一件待处理衣物的图片;
15.重复执行上述转动的步骤和拍摄图片的步骤,以获取所述至少一件待处理衣物的多个图片。
16.于一实施例中,根据各污渍的种类和所在的待处理衣物的材质,推荐处理程序和所述处理程序的参数包括:
17.获取用户当前选择的处理程序;
18.根据各污渍的种类和所在的待处理衣物的材质对所述处理程序的处理参数进行调整,将调整后的处理程序和处理参数分别作为所述推荐的处理程序和所述处理程序的参数。
19.于一实施例中,所述污渍处理机为洗衣机,所述处理参数包括如下参数中的至少
一种:
20.浸泡时间、水温、处理时长、处理桶转速、以及转停比。
21.于一实施例中,根据所述多个图片确定各待处理衣物的至少一个子图像和材质包括:
22.分别将所述多个图片输入至预先训练的脏衣识别模型,得到所述脏衣识别模型输出的至少一件待处理衣物的子图像和材质。
23.于一实施例中,所述脏衣识别模型通过如下步骤训练得到:
24.获取训练样本集合,其中,训练样本包括包含至少一件衣物的图片,以及所述图片中各衣物的子图像的第一标注信息和所述图片中各衣物的材质的第二标注信息;
25.确定初始化的脏衣识别模型,其中所述初始化的脏衣识别模型包括目标层,所述目标层用于输出图片中所包含的各衣物的图像的第一目标层、以及图片中所包含的各衣物的材质的第二目标层;
26.利用机器学习的方法,将所述训练样本集合中的训练样本中的图片作为初始化的脏衣识别模型的输入,将与输入的图片对应的第一标注信息和第二标注信息作为初始化的脏衣识别模型的期望输出,训练得到所述脏衣识别模型。
27.于一实施例中,根据各待处理衣物的至少一个子图像获取各待处理衣物上各污渍的种类包括:
28.将所述脏衣识别模型输出任一待处理衣物的至少一个子图像输入至预先训练的污渍识别模型,得到所述污渍识别模型输出的该待处理衣物上各污渍的种类;
29.记录各污渍的种类和所在的待处理衣物的材质。
30.于一实施例中,所述污渍识别模型通过如下步骤训练得到:
31.获取训练样本集合,其中,训练样本包括衣物图像和标注信息,若所述衣物图像显示对应衣物上有至少一处污渍,所述标注信息包括各处污渍的所属污渍种类;
32.确定初始化的污渍识别模型,其中所述初始化的污渍识别模型包括用于输出衣物图像中显示的污渍图像和各污渍图像所指示的污渍的所属污渍种类;
33.利用机器学习的方法,将所述训练样本集合中的训练样本中的衣物图像作为初始化的污渍识别模型的输入,将与输入的衣物图像对应的标注信息作为初始化的污渍识别模型的期望输出,训练得到所述污渍识别模型。
34.于一实施例中,所述污渍识别模型还用于输出待处理衣物上各污渍的子图像;
35.在记录各污渍的种类和所在的待处理衣物的材质之前还包括:
36.将任一污渍的子图像与海量的多个污渍数据进行对比分析,得到该污渍图像对应的污渍属于各种污渍的概率;
37.对任一污渍,根据所述污渍识别模型输出的污渍的种类,与对比分析得到的属于各种污渍的概率,确定该污渍的种类。
38.于一实施例中,对任一污渍,根据所述污渍识别模型输出的污渍的种类,与对比分析得到的属于各种污渍的概率,确定该污渍的种类包括:
39.对任一污渍,根据所述污渍识别模型输出的污渍的种类,确定所述污渍属于各种污渍的概率,以得到第一概率矩阵;
40.对任一污渍,根据对比分析得到的该污渍属于各种污渍的概率,得到第二概率矩
阵;
41.将所述第一概率矩阵与所述第二概率矩阵进行加权平均确定该污渍的种类。
42.于一实施例中,所述污渍处理机为洗衣机或护理机。
43.在本公开的第二方面,本发明实施例还提供了一种衣物处理装置,包括:
44.衣物图片获取单元,用于获取包含至少一件待处理衣物的多个图片;
45.材质与子图像确定单元,用于根据所述多个图片确定各待处理衣物的至少一个子图像和材质;
46.污渍种类获取单元,用于根据各待处理衣物的至少一个子图像获取各待处理衣物上各污渍的种类;
47.处理控制单元,用于根据各污渍的种类和所在的待处理衣物的材质,推荐处理程序和所述处理程序的参数,以控制污渍处理机根据所推荐的处理程序和所述处理程序的参数对所述待处理衣物进行处理。
48.于一实施例中,所述衣物图片获取单元用于:
49.控制所述污渍处理机的照明模组打开灯光;
50.控制所述污渍处理机的动力模组转动以翻转和抖散所述至少一件待处理衣物;
51.控制所述污渍处理机的相机模组拍摄所述至少一件待处理衣物的图片;
52.重复执行上述转动的步骤和拍摄图片的步骤,以获取所述至少一件待处理衣物的多个图片。
53.于一实施例中,所述处理控制单元用于:获取用户当前选择的处理程序;根据各污渍的种类和所在的待处理衣物的材质对所述处理程序的处理参数进行调整,将调整后的处理程序和处理参数分别作为所述推荐的处理程序和所述处理程序的参数。
54.于一实施例中,所述污渍处理机为洗衣机,所述处理参数包括如下参数中的至少一种:浸泡时间、水温、处理时长、处理桶转速、以及转停比。
55.于一实施例中,所述材质与子图像确定单元用于:分别将所述多个图片输入至预先训练的脏衣识别模型,得到所述脏衣识别模型输出的至少一件待处理衣物的子图像和材质。
56.于一实施例中,所述脏衣识别模型通过如下模块训练得到:
57.第一样本获取模块,用于获取训练样本集合,其中,训练样本包括包含至少一件衣物的图片,以及所述图片中各衣物的子图像的第一标注信息和所述图片中各衣物的材质的第二标注信息;
58.第一模型确定模块,用于确定初始化的脏衣识别模型,其中所述初始化的脏衣识别模型包括目标层,所述目标层用于输出图片中所包含的各衣物的图像的第一目标层、以及图片中所包含的各衣物的材质的第二目标层;
59.第一模型训练模块,用于利用机器学习的装置,将所述训练样本集合中的训练样本中的图片作为初始化的脏衣识别模型的输入,将与输入的图片对应的第一标注信息和第二标注信息作为初始化的脏衣识别模型的期望输出,训练得到所述脏衣识别模型。
60.于一实施例中,所述污渍种类获取单元用于:将所述脏衣识别模型输出任一待处理衣物的至少一个子图像输入至预先训练的污渍识别模型,得到所述污渍识别模型输出的该待处理衣物上各污渍的种类;记录各污渍的种类和所在的待处理衣物的材质。
61.于一实施例中,所述污渍识别模型通过如下模块训练得到:
62.第二样本获取模块,用于获取训练样本集合,其中,训练样本包括衣物图像和标注信息,若所述衣物图像显示对应衣物上有至少一处污渍,所述标注信息包括各处污渍的所属污渍种类;
63.第二模型确定模块,用于确定初始化的污渍识别模型,其中所述初始化的污渍识别模型包括用于输出衣物图像中显示的污渍图像和各污渍图像所指示的污渍的所属污渍种类;
64.第二模型训练模块,用于利用机器学习的装置,将所述训练样本集合中的训练样本中的衣物图像作为初始化的污渍识别模型的输入,将与输入的衣物图像对应的标注信息作为初始化的污渍识别模型的期望输出,训练得到所述污渍识别模型。
65.于一实施例中,所述污渍识别模型还用于输出待处理衣物上各污渍的子图像;
66.所述污渍种类获取单元还用于:在记录各污渍的种类和所在的待处理衣物的材质之前:
67.将任一污渍的子图像与海量的多个污渍数据进行对比分析,得到该污渍图像对应的污渍属于各种污渍的概率;
68.对任一污渍,根据所述污渍识别模型输出的污渍的种类,与对比分析得到的属于各种污渍的概率,确定该污渍的种类。
69.于一实施例中,所述污渍种类获取单元用于对任一污渍,根据所述污渍识别模型输出的污渍的种类,与对比分析得到的属于各种污渍的概率,确定该污渍的种类包括:
70.对任一污渍,根据所述污渍识别模型输出的污渍的种类,确定所述污渍属于各种污渍的概率,以得到第一概率矩阵;
71.对任一污渍,根据对比分析得到的该污渍属于各种污渍的概率,得到第二概率矩阵;
72.将所述第一概率矩阵与所述第二概率矩阵进行加权平均确定该污渍的种类。
73.于一实施例中,所述污渍处理机为洗衣机或护理机。
74.在本公开的第三方面,提供了一种电子设备。该电子设备包括:处理器;以及存储器,用于存储可执行指令,所述可执行指令在被所述处理器执行时使得所述电子设备执行第一方面中的方法。
75.在本公开的第四方面,提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现第一方面中的方法。
76.本发明实施例提出的技术方案的有益技术效果是:
77.本发明实施例通过获取包含待处理衣物的多个图片,据此确定各待处理衣物的子图像和材质;根据各待处理衣物的子图像获取各待处理衣物上各污渍的种类,根据各污渍的种类和所在的待处理衣物的材质,推荐处理程序和所述处理程序的参数,以控制污渍处理机根据所推荐的处理程序和所述处理程序的参数对所述待处理衣物进行处理,能够针对污渍种类和污渍附着的衣物材质自动设置待洗涤衣物所需的准确洗涤参数,能够提升污渍处理效果。
附图说明
78.为了更清楚地说明本发明实施例中的技术方案,下面将对本发明实施例描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明实施例中的一部分实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据本发明实施例的内容和这些附图获得其他的附图。
79.图1是根据本发明实施例提供的一种衣物处理方法的流程示意图;
80.图2是根据本发明实施例提供的一种脏衣识别模型的训练方法的流程示意图;
81.图3是根据本发明实施例提供的一种污渍识别模型的训练方法的流程示意图;
82.图4是根据本发明实施例提供的另一种衣物处理方法的流程示意图;
83.图5是根据本发明实施例提供的一种衣物处理装置的结构示意图;
84.图6是根据本发明实施例提供的一种脏衣识别模型的模块组织结构示意图;
85.图7是根据本发明实施例提供的一种污渍识别模型的模块组织结构示意图;
86.图8示出了适于用来实现本发明实施例的电子设备的结构示意图。
具体实施方式
87.为使本发明实施例解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将结合附图对本发明实施例的技术方案作进一步的详细描述,显然,所描述的实施例仅仅是本发明实施例中的一部分实施例,而不是全部的实施例。基于本发明实施例中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明实施例保护的范围。
88.需要说明的是,本发明实施例中术语“系统”和“网络”在本文中常被可互换使用。本发明实施例中提到的“和/或”是指包括一个或更多个相关所列项目的任何和所有组合。本公开的说明书和权利要求书及附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于限定特定顺序。
89.还需要说明是,本发明实施例中下述各个实施例可以单独执行,各个实施例之间也可以相互结合执行,本发明实施例对此不作具体限制。
90.本公开实施方式中的多个装置之间所交互的消息或者信息的名称仅用于说明性的目的,而并不是用于对这些消息或信息的范围进行限制。
91.下面结合附图并通过具体实施方式来进一步说明本发明实施例的技术方案。
92.图1示出了本发明实施例提供的一种衣物处理方法的流程示意图,本实施例可适用于根据污渍的种类和所附着的衣物材质,确定处理程序及其参数以清除污渍的情况,该方法可以由服务器或云端服务器来执行,如图1所示,本实施例所述的衣物处理方法包括:
93.在步骤s110中,获取包含至少一件待处理衣物的多个图片。
94.例如可通过配置于衣物处理装置顶部的相机模组获取包含至少一件待处理衣物的多个图片。具体地,可控制所述污渍处理机的照明模组打开灯光,控制所述污渍处理机的动力模组转动以翻转和抖散所述至少一件待处理衣物,控制所述污渍处理机的相机模组拍摄所述至少一件待处理衣物的图片,重复执行上述转动的步骤和拍摄图片的步骤,以获取所述至少一件待处理衣物的多个图片。
95.其中,所述污渍处理机包括但不限于洗衣机和护理机。
96.在步骤s120中,根据所述多个图片确定各待处理衣物的至少一个子图像和材质。
97.例如,可分别将所述多个图片输入至预先训练的脏衣识别模型,得到所述脏衣识别模型输出的至少一件待处理衣物的子图像和材质。
98.其中,所述脏衣识别模型可用于输入包含至少一件待处理衣物的图片后,输出该图片中显示的至少一件待处理衣物的子图像和材质。所述脏衣识别模型可通过多种方法训练得到,例为示例,图2示出了一种脏衣识别模型的训练方法的流程示意图,如图2所示,所述脏衣识别模型可通过如下步骤训练得到:
99.在步骤s210中,获取训练样本集合,其中,训练样本包括包含至少一件衣物的图片,以及所述图片中各衣物的子图像的第一标注信息和所述图片中各衣物的材质的第二标注信息。
100.在步骤s220中,确定初始化的脏衣识别模型,其中所述初始化的脏衣识别模型包括目标层,所述目标层用于输出图片中所包含的各衣物的图像的第一目标层、以及图片中所包含的各衣物的材质的第二目标层。
101.在步骤s230中,利用机器学习的方法,将所述训练样本集合中的训练样本中的图片作为初始化的脏衣识别模型的输入,将与输入的图片对应的第一标注信息和第二标注信息作为初始化的脏衣识别模型的期望输出,训练得到所述脏衣识别模型。
102.需要说明的是,上述训练方法仅是一种示例性的方法,只要训练得到的脏衣识别模型能够用于输入包含至少一件待处理衣物的图片后,输出该图片中显示的至少一件待处理衣物的子图像和材质即可,本实施例对具体的训练方法并不作限定。
103.在步骤s130中,根据各待处理衣物的至少一个子图像获取各待处理衣物上各污渍的种类。
104.例如,可将所述脏衣识别模型输出任一待处理衣物的至少一个子图像输入至预先训练的污渍识别模型,得到所述污渍识别模型输出的该待处理衣物上各污渍的种类,记录各污渍的种类和所在的待处理衣物的材质。
105.其中,所述污渍识别模型可用于根据待处理衣物的子图像得到该待处理衣物上各污渍的种类。图3示出了一种污渍识别模型的训练方法的流程示意图,如图3所示,所述污渍识别模型可通过如下步骤训练得到:
106.在步骤s310中,获取训练样本集合,其中,训练样本包括衣物图像和标注信息,若所述衣物图像显示对应衣物上有至少一处污渍,所述标注信息包括各处污渍的所属污渍种类。
107.在步骤s320中,确定初始化的污渍识别模型,其中所述初始化的污渍识别模型包括用于输出衣物图像中显示的污渍图像和各污渍图像所指示的污渍的所属污渍种类。
108.在步骤s330中,利用机器学习的方法,将所述训练样本集合中的训练样本中的衣物图像作为初始化的污渍识别模型的输入,将与输入的衣物图像对应的标注信息作为初始化的污渍识别模型的期望输出,训练得到所述污渍识别模型。
109.需要说明的是,上述训练方法仅是一种示例性的方法,只要训练得到的污渍识别模型能够根据待处理衣物的子图像得到该待处理衣物上各污渍的种类即可,本实施例对具体的训练方法并不作限定。
110.在步骤s140中,根据各污渍的种类和所在的待处理衣物的材质,推荐处理程序和
所述处理程序的参数,以控制污渍处理机根据所推荐的处理程序和所述处理程序的参数对所述待处理衣物进行处理。
111.不同种类的污渍,其处理方式不同,更进一步地,为了更精细化地处理污渍,对于相同种类的污渍来说,其附着在不同材质的衣物上,相应的处理方式也应有差别,若进行污渍处理时,既考虑污渍的种类,也考虑污渍所在的衣物的材质,能够提升污渍处理效果。
112.本步骤根据各污渍的种类和所在的待处理衣物的材质,推荐处理程序和所述处理程序的参数,能够针对污渍种类和污渍附着的衣物材质进行处理,能够提升污渍处理效果。
113.推荐处理程序和所述处理程序的参数,可以是在处理之前进行推荐,也可以是对当前处理程序进行调整,包括获取用户当前选择的处理程序,根据各污渍的种类和所在的待处理衣物的材质对所述处理程序的处理参数进行调整,将调整后的处理程序和处理参数分别作为所述推荐的处理程序和所述处理程序的参数。
114.若所述污渍处理机为洗衣机,所述处理参数可包括浸泡时间、水温、处理时长、处理桶转速、以及转停比中的一种或多种。
115.本实施例通过获取包含待处理衣物的多个图片,据此确定各待处理衣物的至少一个子图像和材质,根据各待处理衣物的子图像获取各待处理衣物上各污渍的种类,根据各污渍的种类和所在的待处理衣物的材质,推荐处理程序和所述处理程序的参数,以控制污渍处理机根据所推荐的处理程序和所述处理程序的参数对所述待处理衣物进行处理,能够针对污渍种类和污渍附着的衣物材质自动设置待洗涤衣物所需的准确洗涤参数,能够提升污渍处理效果。
116.图4示出了本发明实施例提供的另一种衣物处理方法的流程示意图,本实施例以前述实施例为基础,进行了改进优化。如图4所示,本实施例所述的衣物处理方法包括:
117.在步骤s410中,获取包含至少一件待处理衣物的多个图片。
118.例如,可控制所述污渍处理机的照明模组打开灯光,控制所述污渍处理机的动力模组转动以翻转和抖散所述至少一件待处理衣物,控制所述污渍处理机的相机模组拍摄所述至少一件待处理衣物的图片,重复执行上述转动的步骤和拍摄图片的步骤,以获取所述至少一件待处理衣物的多个图片。
119.在步骤s420中,分别将所述多个图片输入至预先训练的脏衣识别模型,得到所述脏衣识别模型输出的至少一件待处理衣物的子图像和材质。
120.在步骤s430中,将所述脏衣识别模型输出任一待处理衣物的至少一个子图像输入至预先训练的污渍识别模型,得到所述污渍识别模型输出的该待处理衣物上各污渍的种类。
121.在步骤s440中,记录各污渍的种类和所在的待处理衣物的材质。
122.为了进一步提升识别污渍种类的准确性,还可对所述污渍识别模型进行改进,以使所述污渍识别模型除了输出待处理衣物上各污渍的种类之外,还输出待处理衣物上各污渍的子图像。
123.基于所述污渍识别模型的上述输出结果,在执行步骤s440之前还可:将任一污渍的子图像与海量的多个污渍数据进行对比分析,得到该污渍图像对应的污渍属于各种污渍的概率;对任一污渍,根据所述污渍识别模型输出的污渍的种类,与对比分析得到的属于各种污渍的概率,确定该污渍的种类。
124.进一步地,对任一污渍,根据所述污渍识别模型输出的污渍的种类,与对比分析得到的属于各种污渍的概率,确定该污渍的种类可采用多种方法,例如,对任一污渍,可根据所述污渍识别模型输出的污渍的种类,确定所述污渍属于各种污渍的概率,以得到第一概率矩阵;对任一污渍,可根据对比分析得到的该污渍属于各种污渍的概率,得到第二概率矩阵;将所述第一概率矩阵与所述第二概率矩阵进行加权平均确定该污渍的种类。
125.在步骤s450中,根据各污渍的种类和所在的待处理衣物的材质,推荐处理程序和所述处理程序的参数,以控制污渍处理机根据所推荐的处理程序和所述处理程序的参数对所述待处理衣物进行处理。
126.例如,可获取用户当前选择的处理程序,根据各污渍的种类和所在的待处理衣物的材质对所述处理程序的处理参数进行调整,将调整后的处理程序和处理参数分别作为所述推荐的处理程序和所述处理程序的参数。又如,还可直接根据各污渍的种类和所在的待处理衣物的材质,推荐处理程序和所述处理程序的参数。
127.本实施例在图1所示实施例的基础之上,采用了两个机器学习模型,通过脏衣识别模型识别衣物材质并获取衣物子图,再通过污渍识别模型识别各衣物子图中的污渍以获取各待处理衣物上的污渍种类,从而获取各污渍的种类和所附着衣物的材质,根据各污渍的种类和所在的待处理衣物的材质,推荐处理程序和所述处理程序的参数,以控制污渍处理机根据所推荐的处理程序和所述处理程序的参数对所述待处理衣物进行处理,能够针对污渍种类和污渍附着的衣物材质自动设置待洗涤衣物所需的准确洗涤参数,能够提升污渍处理效果。
128.作为上述各图所示方法的实现,本技术提供了一种衣物处理装置的一个实施例,图5示出了本实施例提供的一种衣物处理装置的结构示意图,该装置实施例与图1和图4所示的方法实施例相对应,该装置具体可以应用于各种电子设备中。如图5所示,本实施例所述的衣物处理装置包括衣物图片获取单元410、材质与子图像确定单元420、污渍种类获取单元430和处理控制单元440。
129.所述衣物图片获取单元410被配置为,用于获取包含至少一件待处理衣物的多个图片。
130.所述材质与子图像确定单元420被配置为,用于根据所述多个图片确定各待处理衣物的至少一个子图像和材质。
131.所述污渍种类获取单元430被配置为,用于根据各待处理衣物的至少一个子图像获取各待处理衣物上各污渍的种类。
132.所述处理控制单元440被配置为,用于根据各污渍的种类和所在的待处理衣物的材质,推荐处理程序和所述处理程序的参数,以控制污渍处理机根据所推荐的处理程序和所述处理程序的参数对所述待处理衣物进行处理。
133.根据本公开的一个或多个实施例,所述衣物图片获取单元510被配置为,用于控制所述污渍处理机的照明模组打开灯光;控制所述污渍处理机的动力模组转动以翻转和抖散所述至少一件待处理衣物;控制所述污渍处理机的相机模组拍摄所述至少一件待处理衣物的图片;重复执行上述转动的步骤和拍摄图片的步骤,以获取所述至少一件待处理衣物的多个图片。
134.根据本公开的一个或多个实施例,所述处理控制单元540被配置为,用于获取用户
当前选择的处理程序;根据各污渍的种类和所在的待处理衣物的材质对所述处理程序的处理参数进行调整,将调整后的处理程序和处理参数分别作为所述推荐的处理程序和所述处理程序的参数。
135.根据本公开的一个或多个实施例,所述污渍处理机为洗衣机,所述处理参数包括如下参数中的至少一种:浸泡时间、水温、处理时长、处理桶转速、以及转停比。
136.根据本公开的一个或多个实施例,所述材质与子图像确定单元520被配置为,用于分别将所述多个图片输入至预先训练的脏衣识别模型,得到所述脏衣识别模型输出的至少一件待处理衣物的子图像和材质。
137.图6是根据本实施例提供的一种脏衣识别模型的模块组织结构示意图,如图6所示,所述脏衣识别模型通过第一样本获取模块610、第一模型确定模块620和第一模型训练模块630训练得到:
138.所述第一样本获取模块610被配置为,用于获取训练样本集合,其中,训练样本包括包含至少一件衣物的图片,以及所述图片中各衣物的子图像的第一标注信息和所述图片中各衣物的材质的第二标注信息。
139.所述第一模型确定模块620被配置为,用于确定初始化的脏衣识别模型,其中所述初始化的脏衣识别模型包括目标层,所述目标层用于输出图片中所包含的各衣物的图像的第一目标层、以及图片中所包含的各衣物的材质的第二目标层。
140.所述第一模型训练模块630被配置为,用于利用机器学习的装置,将所述训练样本集合中的训练样本中的图片作为初始化的脏衣识别模型的输入,将与输入的图片对应的第一标注信息和第二标注信息作为初始化的脏衣识别模型的期望输出,训练得到所述脏衣识别模型。
141.根据本公开的一个或多个实施例,所述污渍种类获取单元530被配置为,用于将所述脏衣识别模型输出任一待处理衣物的至少一个子图像输入至预先训练的污渍识别模型,得到所述污渍识别模型输出的该待处理衣物上各污渍的种类,记录各污渍的种类和所在的待处理衣物的材质。
142.图7是根据本实施例提供的一种污渍识别模型的模块组织结构示意图,如图7所示,所述污渍识别模型通过第二样本获取模块710、第二模型确定模块720和第二模型训练模块730训练得到:
143.所述第二样本获取模块710被配置为,用于获取训练样本集合,其中,训练样本包括衣物图像和标注信息,若所述衣物图像显示对应衣物上有至少一处污渍,所述标注信息包括各处污渍的所属污渍种类。
144.所述第二模型确定模块720被配置为,用于确定初始化的污渍识别模型,其中所述初始化的污渍识别模型包括用于输出衣物图像中显示的污渍图像和各污渍图像所指示的污渍的所属污渍种类。
145.所述第二模型训练模块730被配置为,用于利用机器学习的装置,将所述训练样本集合中的训练样本中的衣物图像作为初始化的污渍识别模型的输入,将与输入的衣物图像对应的标注信息作为初始化的污渍识别模型的期望输出,训练得到所述污渍识别模型。
146.根据本公开的一个或多个实施例,所述污渍识别模型还用于输出待处理衣物上各污渍的子图像;
147.所述污渍种类获取单元530被配置为,还用于在记录各污渍的种类和所在的待处理衣物的材质之前:
148.将任一污渍的子图像与海量的多个污渍数据进行对比分析,得到该污渍图像对应的污渍属于各种污渍的概率;
149.对任一污渍,根据所述污渍识别模型输出的污渍的种类,与对比分析得到的属于各种污渍的概率,确定该污渍的种类。
150.根据本公开的一个或多个实施例,所述污渍种类获取单元530被配置为,还用于对任一污渍,根据所述污渍识别模型输出的污渍的种类,与对比分析得到的属于各种污渍的概率,确定该污渍的种类包括:
151.对任一污渍,根据所述污渍识别模型输出的污渍的种类,确定所述污渍属于各种污渍的概率,以得到第一概率矩阵;
152.对任一污渍,根据对比分析得到的该污渍属于各种污渍的概率,得到第二概率矩阵;
153.将所述第一概率矩阵与所述第二概率矩阵进行加权平均确定该污渍的种类。
154.本实施例提供的衣物处理装置可执行本公开方法实施例所提供的衣物处理方法,具备执行方法相应的功能模块和有益效果。
155.下面参考图8,其示出了适于用来实现本发明实施例的电子设备800的结构示意图。本发明实施例中的终端设备可以包括但不限于诸如移动电话、笔记本电脑、数字广播接收器、pda(个人数字助理)、pad(平板电脑)、pmp(便携式多媒体播放器)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字tv、台式计算机等等的固定终端。图8示出的电子设备仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
156.如图8所示,电子设备800可以包括处理装置(例如中央处理器、图形处理器等)801,其可以根据存储在只读存储器(rom)802中的程序或者从存储装置808加载到随机访问存储器(ram)803中的程序而执行各种适当的动作和处理。在ram 803中,还存储有电子设备800操作所需的各种程序和数据。处理装置801、rom 802以及ram 803通过总线804彼此相连。输入/输出(i/o)接口805也连接至总线804。
157.通常,以下装置可以连接至i/o接口805:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置806;包括例如液晶显示器(lcd)、扬声器、振动器等的输出装置807;包括例如磁带、硬盘等的存储装置808;以及通信装置809。通信装置809可以允许电子设备800与其他设备进行无线或有线通信以交换数据。虽然图8示出了具有各种装置的电子设备800,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。
158.特别地,根据本发明实施例的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本发明实施例的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信装置809从网络上被下载和安装,或者从存储装置808被安装,或者从rom 802被安装。在该计算机程序被处理装置801执行时,执行本发明实施例的方法中限定的上述功能。
159.需要说明的是,本发明实施例上述的计算机可读介质可以是计算机可读信号介质
或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(ram)、只读存储器(rom)、可擦式可编程只读存储器(eprom或闪存)、光纤、便携式紧凑磁盘只读存储器(cd-rom)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本发明实施例中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本发明实施例中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、rf(射频)等等,或者上述的任意合适的组合。
160.上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。
161.上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备:获取包含至少一件待处理衣物的多个图片;根据所述多个图片确定各待处理衣物的至少一个子图像和材质;根据各待处理衣物的至少一个子图像获取各待处理衣物上各污渍的种类;根据各污渍的种类和所在的待处理衣物的材质,推荐处理程序和所述处理程序的参数,以控制污渍处理机根据所推荐的处理程序和所述处理程序的参数对所述待处理衣物进行处理。
162.可以以一种或多种程序设计语言或其组合来编写用于执行本发明实施例的操作的计算机程序代码,上述程序设计语言包括面向对象的程序设计语言—诸如java、smalltalk、c++,还包括常规的过程式程序设计语言—诸如“c”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络包括局域网(lan)或广域网(wan)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
163.附图中的流程图和框图,图示了按照本发明实施例各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
164.描述于本发明实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,单元的名称在某种情况下并不构成对该单元本身的限定,例如,第一获取单元还可以被描述为“获取至少两个网际协议地址的单元”。
165.以上描述仅为本发明实施例的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本发明实施例中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本发明实施例中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。