1.本发明属于荧光探针领域,具体涉及一种具有可见光调控的荧光探针及其制备与应用。
背景技术:2.荧光探针具有操作简单、选择性高、灵敏度高等优点,是目前最常用和应用最广泛的荧光分析方法,在药理学、医学、生理学和生物学中有广泛的应用。基于有机小分子的荧光探针因其独特的优势,如易于修饰的分子结构、可调控的荧光性能、相对快速的响应和良好的生物相容性而越来越受欢迎。目前,量子点(qds)、单壁碳纳米管(swcnts)、掺杂稀土纳米颗粒(renps)、有机染料已被广泛应用于荧光成像。然而许多无机纳米颗粒的毒性,包括单壁碳纳米管、量子点和稀土掺杂纳米颗粒由于它们长期保留在网状内皮系统(res)和不能快速的新陈代谢,具有潜在的危害。同时,缺乏足够的长期研究详细说明这些探针的毒性可能限制进一步临床前和临床应用。共轭聚合物和小分子等有机材料在体内表现出了高度的生物相容性和潜在的生物降解性,特别的是与聚合物相比,有机小分子探针具有分子量小,可重复性的优势,且小分子可以从活体受试者体内快速排泄在临床转化中具有明显的优势。
3.传统的荧光探针是具有强的d-a结构或d-a-d结构,通过增加共轭程度从而达到荧光发射红移的效果,但同时共轭程度的增加,常常伴随着光漂白以及容易通过堆积聚集,导致荧光淬灭,即典型的聚集荧光淬灭(acq)现象,而降低共轭程度或刚性平面,其性能一般会有不同程度的影响。大部分的红光及近红外染料分子的设计都是在传统分子如罗丹明、香豆素、荧光素、花菁染料、bodipy类、方酸类、卟啉类及具有供体受体d-a骨架结构上进行修饰以得到具有新的性能的荧光探针。从而在设计分子上就需要不断的堆积,从而达到近红外发射的性能,这在设计上就为合成增加了难度,后处理过程也相对麻烦,不仅耗时长,同时产率较低。而选择在原有的染料分子上进行修饰可在一定程度上减低合成难度,但在染料分子发展应用上限制其更多的可能性。目前,仅有两种红外有机荧光探针,即亚甲蓝(mb,λex=665nm,λem=686nm)和吲哚菁绿(icg,λex=808nm,λem=822nm)被美国食品和药物管理局(fda)临床批准。
技术实现要素:4.本发明针对当前分子量大、共轭程度强以及合成困难等问题,本发明提供一种具有可见光调控的荧光探针,为设计合成新的红光荧光探针提供了新的策略。本发明针对目前绝大多数荧光探针具有结构复杂,合成困难,创新性等特点,通过简单的两步反应合成了仅具有两个苯环的红色荧光探针,大大的降低其共轭程度及刚性平面,抑制了其堆积聚集,同时该探针具有分子量小,水溶性好等优点,具有清晰的生物应用前景。并通过微调官能团,从而实现不同波长的发射,覆盖全可见光区。
5.一种具有可见光调控的荧光探针,结构通式为:
[0006][0007]
其中r1=h,oh;r2=no2,cn,f,cl,br;x=f,cl,br,pf6。
[0008]
优选的,r1=oh,r2=no2,x=br或者r1=oh,r2=cn,x=br。
[0009]
本发明通过采用含有不同的给电子基(羟基,甲氧基)和不同的吸电子基(硝基,氰基,卤素)通过一步反应与吡啶盐类化合物反应从而生成具有红色荧光的探针分子。本发明的荧光发射波长更长,高达640nm左右,理论上可用于细胞成像。目前硝基是作为典型的荧光淬灭基团或作为硝基还原酶的识别基团,本发明创新的使用硝基促进荧光发射红移。本发明的荧光探针上连接羟乙基除了形成吡啶盐外还有一个功能就是增加化合物的水溶性。
[0010]
上述具有可见光调控的荧光探针的制备方法,其特征在于,包括以下步骤:
[0011]
(1)先加入4-甲基吡啶和卤素醇(也可以是卤代烃),加入无水乙腈搅拌溶解,然后升温继续搅拌反应,将反应液旋干得到吡啶盐化合物;
[0012]
(2)往步骤(1)所得吡啶盐化合物中加入醛类化合物;然后加入无水乙醇溶剂搅拌溶解并加入乙酸铵或者醋酸铵,继续搅拌,反应结束后,除去溶剂,纯化。
[0013]
优选的,步骤(2)所述纯化为采用硅胶柱,用dcm:meoh(10:1-1:1)作为洗脱剂。
[0014]
优选的,所述醛类化合物包括5-取代的水杨醛和5-取代的苯甲醛。优选5-硝基水杨醛、2-羟基-5-氰基苯甲醛、5-氯水杨醛、5-溴苯甲醛、5-氟-2-羟基苯甲醛、水杨醛、3-氯苯甲醛、3-溴苯甲醛、3-氟苯甲醛、间硝基苯甲醛、3-氰基苯甲醛、5-硝基-邻茴香醛等。
[0015]
优选的,所述4-甲基吡啶、2-溴乙醇、醛类化合物的摩尔比为1:1.2:1。
[0016]
优选的,所述卤素醇为2-溴乙醇。
[0017]
本发明采用5-取代的水杨醛/5-取代的苯甲醛和4-甲基吡啶为原料合成了一系列具有吸电子取代基的探针分子,合成步骤简单,提纯操作及产率高。合成的荧光探针在结构上仅具有两个苯环,通过双键来延长共轭程度,结构刚性较小,不容易通过堆积聚集,导致荧光淬灭,克服了传统的聚集荧光淬灭(acq)现象。同时通过对比实验,在苯环上同时连接羟基和吸电子基可较大程度上促进分子荧光发射的红移,从而实现红光探针及近红外荧光探针的设计。
[0018]
一种具有可见光调控的荧光探针的设计方法,包括以下步骤:
[0019]
(1)通过密度泛函理论计算编写脚本;
[0020]
(2)将编写好的脚本提交到计算机上,通过高斯程序进行计算;
[0021]
(3)根据计算结果分析筛选具有较优性能的结构,确定目标产物的结构,并进行实验合成;
[0022]
(4)通过表征手段对目标产物进行分析,同时反馈所得数据,并对设计的分子进行优化。
[0023]
本发明采用给体、受体的分子组合(利用不同的π键连接不同的给受体)的策略,通过对d-a型结构与d-a-d型结构的设计,结合密度泛函理论(dft)和b3lyp方法对分子进行
预测,一般情况下,分子能隙越小,分子越红移,大约能隙在2.00ev左右时,分子发射红光。因此,利用能隙对红移的影响,初步的筛选可能具有红光发射的分子,然后进一步模拟它的吸收与荧光发射波长等光学性能。根据合成难易程度进行排序,选定合适的目标产物,设计合理的合成步骤,从而合成相应的产物。可大大提高设计效率,节省人力物力财力。
[0024]
上述具有可见光调控的荧光探针的应用,可作为荧光剂、用于分析检测和作为荧光分子探针在生物方面的应用。
[0025]
与现有技术相比,本发明具有以下优势:
[0026]
(1)本发明在苯环上连接的羟基与一系列吸电子基相连作为原料与吡啶盐化合物进行knoevenagel缩合反应制备一系列的具有发射波长调控的荧光探针。本发明采用市面上可购买的商业化结构作为原料,价廉易得,不仅可以方便快捷的大量制备,而且可以降低成本,减少能源消耗。
[0027]
(2)本发明采用具有非典型供体受体骨架的方法策略,即采用在传统d-a结构中在给体结构上连接吸电子基从而构建成一个新的d/a-a的结构,与传统的d-a结构对比,该类分子在发光性能上具有显著的优势。该策略为后期设计合成长波长发射的荧光探针提供了新的思路。
附图说明
[0028]
图1是本发明的荧光探针的设计思路(a)和合成路线图(b);
[0029]
图2是本发明的固体荧光探针日光灯和365nm紫外灯下的图像,其中(a)和(c)是在日光灯,(b)和(d)是在365nm紫外灯下;
[0030]
图3是本发明的探针分子溶液分别在日光灯(左)和365nm紫外灯(右)下的图像,溶液浓度均为50μmol/l;
[0031]
图4是本发明的探针分子溶液的紫外吸收和荧光发射光谱图,溶液浓度均为50μmol/l;
[0032]
图5是本发明的荧光探针在溶剂中的发光行为,其中上图为日光灯,下图为365nm紫外灯,浓度均为10mmol/l;
[0033]
图6是本发明的荧光探针py-oh的核磁图;
[0034]
图7是本发明的荧光探针py-no2的核磁图;
[0035]
图8是本发明的荧光探针py-oh-n的核磁图;
[0036]
图9是本发明的荧光探针py-no
2-oh的核磁图;
[0037]
图10是本发明的荧光探针py-cn的核磁图;
[0038]
图11是本发明的荧光探针py-f的核磁图;
[0039]
图12是本发明的荧光探针py-cl的核磁图;
[0040]
图13是本发明的荧光探针py-br的核磁图;
[0041]
图14是本发明的荧光探针py-cn-oh的核磁图;
[0042]
图15是本发明的荧光探针py-f-oh的核磁图;
[0043]
图16是本发明的荧光探针py-br-oh的核磁图;
[0044]
图17是本发明的荧光探针py-cl-oh的核磁图;
[0045]
图18是本发明的荧光探针py-no
2-och3的核磁图;
[0046]
图19是本发明的荧光探针在水中的发光图;
[0047]
图20是对比例的荧光探针py-oh-n的紫外吸收和荧光发射图谱;
[0048]
图21是对比例的荧光探针py-oh-n探针在溶剂中的发光行为,左图表示的是在日光下的发光图,右图表示的是在365nm紫外灯下的发光图。
具体实施方式
[0049]
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
[0050]
实施例1
[0051]
一种具有可见光调控的荧光探针的设计方法,如图1中的(a)所示,主要包括以下步骤:
[0052]
首先通过文献调研整理所用到的电子受体(a)和电子供体(d)及π桥,基于d-π-a骨架进行设计,固定d及a结构不变,改变π桥或固定d/a及π桥不变,改变a/d结构,将其进行线性组合人工设计合成一系列的探针分子,通过密度泛函理论(dft)计算编写一系列的脚本;
[0053]
其次,将编写好的脚本提交到计算机上,通过密度泛函理论(dft)进行计算;
[0054]
然后,根据计算结果分析筛选具有较优性能的结构,通过文献调研及可行性分析,确定目标产物的结构,并进行实验合成;
[0055]
最后通过一系列表征手段对目标产物进行分析,数据处理,同时将所得数据反馈到最先设计上,对设计的分子进行优化并提交新的任务,从而实现分子设计合成的无间断循环,节省的人力财力物力。
[0056]
实施例2
[0057]
一种具有可见光调控的荧光探针的制备方法,如1中的(b)所示,包括以下步骤:
[0058]
步骤一:在干燥的单口烧瓶中加入4-甲基吡啶和2-溴乙醇,加入无水乙腈搅拌溶解,然后升温至80℃继续搅拌反应16h,反应结束后,将反应液旋干得到产物,该产物可直接用于下一步反应,无需进一步纯化。
[0059]
步骤二:在干燥的单口烧瓶中加入醛类化合物和上一步得到的吡啶盐化合物,然后加入无水乙醇溶剂搅拌溶解并加入乙酸铵或者醋酸铵,在80℃下继续搅拌16h左右,反应结束后,直接用旋转蒸发仪除去溶剂,将旋干的粗产物在硅胶柱上纯化,使用dcm:meoh(10:1-1:1)作为洗脱剂,得到固体产物。
[0060]
该反应主要通过两步简单的反应(烷基化反应及knoevenagel缩合反应)合成了一系列具有不同荧光性质的探针分子。
[0061]
实施例3
[0062]
1.甲基吡啶盐的合成:首先,在干燥的单口烧瓶中加入4-甲基吡啶和溴乙醇,然后加入无水乙腈搅拌溶解,在80℃下继续搅拌16h。反应结束后,将反应液直接旋干得到粗产物,无需进一步纯化,直接用于下一步反应。
[0063]
2.py系列分子的合成步骤:首先,在干燥的单口烧瓶中加入醛类化合物(5-硝基水杨醛、2-羟基-5-氰基苯甲醛、5-氯水杨醛、5-溴苯甲醛、5-氟-2-羟基苯甲醛、水杨醛、3-氯苯甲醛、3-溴苯甲醛、3-氟苯甲醛、间硝基苯甲醛、3-氰基苯甲醛、5-硝基-邻茴香醛中的一
种)和甲基吡啶盐,加入无水乙醇搅拌溶解,然后加入醋酸铵,加热至回流温度下继续搅拌24h。反应结束后,将反应液旋干得到粗产物,最后在硅胶柱上纯化,用1:1的二氯甲烷:无水乙醇作为洗脱剂,分别得到产物py-oh、py-no2、py-oh-n、py-no
2-oh、py-cn、py-f、py-cl、py-br、py-cn-oh、py-f-oh、py-br-oh、py-cl-oh、py-no
2-och3,核磁图分别如图6-图18所示。
[0064]
表征结果
[0065]
实施例3通过采用含有不同的给电子基(羟基,甲氧基)和不同的吸电子基(硝基,氰基,卤素)通过一步反应与吡啶盐类化合物反应从而生成具有红色荧光的探针分子。如图2所示,实施例3所制的荧光探针在固体状态下在365nm的激发波长下显示出不同的荧光发射,其中,其连接强的吸电子硝基的荧光探针显示出红色荧光,明显的看出py-no
2-oh探针在365nm的激发波长下发出强烈的红色荧光,同时,也可以观察到在没有连接羟基的荧光探针在365nm的激发波长下几乎不发射荧光。而在苯环上连接羟基的探针在365nm的紫外灯下具有从黄到红的发光行为,并且它们在结构上的差异主要体现在吸电子基上。
[0066]
如图3所示,实施例3所制备的探针分子在365nm的激发波长下均可发射不同颜色的荧光,其中,可以明显的看出py-no
2-oh探针在365nm的激发波长下发出强烈的红色荧光,同时,没有连接羟基或者连接甲氧基的探针分子在溶液中发射出强烈的蓝绿荧光。
[0067]
如图4所示,实施例3所制备的探针分子通过在结构上的微调控,可实现可见光波长范围上的波长调控。当苯环上同时连接羟基和硝基或氰基时,其紫外吸收波长约500nm左右,而苯环上只连接硝基或氰基而未连接羟基时,其紫外吸收波长在330nm左右,同时,苯环上若只连接羟基而未连接其他吸电子基,其紫外吸收波长约400nm左右。
[0068]
表1实施例3所制备的探针分子py-no
2-oh在各溶剂中的溶解性
[0069][0070]
如图5所示,在溶液中,该类荧光探针的发光性质与固体的发光性质相似,在py-no
2-oh中显示出强烈的红色荧光,同时在连接羟基的探针分子都表现出黄色或红色荧光,而在未连接羟基的探针分子中则基本发射蓝光。
[0071]
表2.实施例3制备荧光探针的骨架及结构性质及发光性能
[0072]
[0073][0074]
如图19为实施例3所制备的探针分子探针在水中的发光行为。可以看出本发明的荧光探针上连接羟乙基除了形成吡啶盐外还有一个功能就是增加化合物的水溶性。
[0075]
对比例
[0076]
d_a结构荧光探针py-oh-n,结构式如下:
[0077][0078]
合成步骤包括:首先,在干燥的单口烧瓶中加入醛类化合物和甲基吡啶盐,加入无水乙醇搅拌溶解,然后加入醋酸铵,加热至回流温度下继续搅拌24h。反应结束后,将反应液旋干得到粗产物,最后在硅胶柱上纯化,用二氯甲烷:无水乙醇作为洗脱剂,得到产物。py-oh-n探针的紫外吸收和荧光发射图谱如图20所示。py-oh-n荧光探针在溶剂中的发光行为如图21所示,左图表示的是该探针在日光下的发光图,右图表示的是在365nm紫外激发下的发光图。