首页 > 摄影电影 专利正文
非线性光纤和高相干宽带可见光超连续谱光源的制作方法

时间:2022-02-10 阅读: 作者:专利查询

非线性光纤和高相干宽带可见光超连续谱光源的制作方法

1.本发明涉及光纤,特别是一种非线性光纤和高相干宽带可见光超连续谱光源。
技术背景
2.可见光波段的激光因具有荧光效应、生物效应、光化学和光电效应,逐渐成为近年来的研究热点,其所具有的独特特性使其在生物医学、医疗、国防安全、科研等领域有着不可取代的地位。
3.目前,产生可见光激光的方式主要有以下几种:(1)、基于过渡族金属掺杂的钛蓝宝石激光器。钛蓝宝石激光器具有高达400nm的调谐范围,可以获得浅红至深红波段(620-700nm)的可见光激光输出;(2)基于稀土掺杂氟化物机制的可见光激光器。利用氟化物玻璃的低声子能量和可高掺杂特性,通过在氟化物光纤中掺杂镨等稀土离子,可以获得可见光超快激光输出。(3)通过非线性晶体频率转换可以获得可见光光源,这是目前获得高功率和高光束质量可见光激光的主导技术手段,可调谐性差且系统复杂。
4.超连续谱是指窄带的强激光脉冲在非线性介质中引起光谱剧烈展宽的现象。目前,波长短至400nm的可见光超连续谱一般是在光纤的反常色散区且在零色散点附近泵浦产生的。当在光纤的反常色散区泵浦产生超连续谱时,超连续谱脉冲具有复杂的时间分布、相当大的强度变化和低相干性,不适合许多需要高相干宽带光源或需要时域中单个超快脉冲的应用。超连续谱的相干性主要受到脉冲噪声,以及产生超连续谱的内在机制的影响,如拉曼效应等。在光纤的反常色散区泵浦时,孤子和色散波是产生超连续谱的主要机制。孤子任何微小的强度起伏都会通过孤子自频移效应引起波长变化。超连续谱脉冲在光纤中传播时会经历色散,所以时域脉冲也会受到影响。如果在光纤的正常色散区泵浦,泵浦脉冲最初通过自相位调制对称展宽,之后通过光波分裂和四波混频效应在光谱两端增加额外的光谱成分,避免了孤子效应。超连续谱的展宽过程在一个稳定的时间序列中发生,可以在时域上保留单个脉冲,并具有平滑、可重新压缩的相位分布。通过改变光纤横截面结构、在微结构光纤空气孔中填充气体或液体可以改善光纤特性,使泵浦光位于光纤的正常色散区,产生可见-近红外波段的超连续谱,但是存在谱宽窄,未能完全覆盖可见光波段的问题。
5.目前,光纤中的物质填充大多是在空芯光子带隙光纤中实现的[optics express,2013.21(9):p.10942-10953]、[journal of the optical society of america b-optical physics,2011.28(12):p.a11-a26],依靠纤芯孔与包层孔的尺寸大小不同导致的物质的填充速度不同,来实现仅纤芯填充。但是这种情况下,纤芯尺寸较大,最小约为10微米,不适用于高相干超连续谱的产生。


技术实现要素:

[0006]
本发明的目的在于提供一种适用于高相干宽带可见光超连续谱产生的非线性光纤,该光纤初始纤芯尺寸小于普遍使用的空芯光子带隙光纤,使初始光纤色散处于正常色散区;光纤采用锥形设计使光纤色散绝对值最低点沿光纤纵向逐渐往短波移动,更好的匹
配泵浦波长;纤芯填充高非线性物质,提高光纤的非线性。
[0007]
本发明的技术方案是这样来实现的:
[0008]
首先,本发明提供一种非线性光纤,其特点在于,为具有纵轴的长锥形,包括沿所述纵轴的长度延伸且能引导光的纤芯区和包围所述纤芯区的包层区,所述的包层区包括光纤基质区、以及多个在该光纤基质区中以沿着所述纵轴延伸的毛细管,所述的毛细管围绕所述的纤芯区布置;
[0009]
所述的纤芯区和所述的毛细管的直径沿所述纵轴由大变小,且在同一横截面,所述的纤芯区空气孔的直径与所述的毛细管的直径相同,在该非线性光纤的粗端,所述的毛细管由空气填充封闭。
[0010]
所述的纤芯区由折射率高于所述的光纤基质区材料折射率的液体填充。
[0011]
所述的光纤基质区为石英玻璃材料,或者,碲酸盐或氟化物软玻璃材料。
[0012]
所述的毛细管区为六边形堆积或圆形堆积。
[0013]
所述的纤芯区填充液体的折射率需使非线性光纤满足全内反射导光原理。
[0014]
所述的非线性光纤的粗端直径小于5微米,使初始光纤色散处于正常色散区;非线性光纤为锥形,使光纤色散绝对值最低点沿光纤纵向逐渐往短波移动。
[0015]
其次,本发明还提供一种制备上述非线性光纤的方法,该方法包括如下步骤:
[0016]
步骤一:拉制未填充液体的空芯微结构光纤;
[0017]
步骤二:对空芯微结构光纤进行拉锥处理;
[0018]
步骤三:对拉锥后的空芯微结构光纤的粗端进行选择性封孔处理,点胶封闭光纤的毛细管区,只保留纤芯孔;
[0019]
步骤四:从封孔后的光纤粗端填充高折射率的非线性物质。
[0020]
最后,本发明还提供了采用上述非线性光产生的高相干宽带可见光超连续谱光源,该光源包括上述非线性光纤以及泵浦激光源,所述的泵浦激光源产生的泵浦脉冲经所述的非线性光纤的输入端射入所述的非线性光纤,初始泵浦波长处于光纤的正常色散区,光纤色散绝对值最低点沿光纤纵向逐渐往短波移动,随泵浦脉冲在非线性光纤中的传输,由于非线性作用产生的光谱短波成份作为泵浦光继续在光纤的色散绝对值最低点附近泵浦,产生新的光谱成份,最终获得高相干宽带的可见光超连续谱。
[0021]
所述的泵浦激光源的泵浦脉冲波长为1um,泵浦脉宽为小于百飞秒量级。
[0022]
与现有技术相比,本发明的有益效果是:
[0023]
利用纤芯孔及包层孔尺寸相同的微结构光纤而不是空芯光子带隙光纤实现高折射物质的纤芯部分填充,减小填充后非线性光纤的纤芯尺寸至10微米,甚至5微米以下;非线性光纤采用锥形设计,调节光纤色散特性,使光纤零色散点减小,例如从1微米减小至0.5微米,逐渐匹配泵浦波长,增加超连续谱带宽;非线性光纤的纤芯填充高折射率的物质,增加非线性,特别适用于高相干可见光宽带超连续谱产生。
附图说明
[0024]
图1为本发明非线性光纤的整体结构示意图,其中,a为非线性光纤的粗端端面,b为非线性光纤的侧面图像,c为非线性光纤的细端端面。
[0025]
图2为本发明非线性光纤的色散曲线纵向变化示意图(从光纤粗端至光纤细端依
次为点线-虚线-实线)。
[0026]
图3为未填充液体的空芯微结构光纤的端面结构示意图。
[0027]
图中,1光纤基质区,2纤芯区,3为毛细管区,4为空芯微结构光纤的端面结构,2’为未填充液体的纤芯区。
具体实施方式
[0028]
下面结合实例和附图对本发明作进一步说明,但不应以此限制本发明的保护范围。
[0029]
图1所示是一种适用于高相干宽带可见光超连续谱产生的非线性光纤,包括光纤基质区1、纤芯区2及毛细管区3。非线性光纤外观为锥形,内部纤芯区2及毛细管区3纵向变化以调节光纤色散;粗光纤端仅有光纤基质区1及纤芯区2,毛细管区3封闭,便于高折射率物质填充,提高光纤非线性;细光纤端包括光纤基质区1、纤芯区2及毛细管区3。
[0030]
所述光纤基质区1为石英玻璃材料。
[0031]
所述纤芯区2粗端直径约为4.2微米,细端直径约为0.8微米。
[0032]
所述毛细管区3为六边形堆积。
[0033]
所述纤芯填充物质为四氯化碳液体,四氯化碳液体的折射率为1.486,可使非线性光纤满足全内反射导光原理。
[0034]
如图2所示非线性光纤的色散处于正常色散区,点线-虚线-实线分别为光纤从粗端到细端的色散曲线,沿光纤纵向色散绝对值最低点分别约为1070nm、910nm、707nm。
[0035]
所述非线性光纤用于产生高相干可见光宽带超连续谱的原理为:泵浦脉冲波长为1064nm,处于光纤粗端色散绝对值最低点附近,随泵浦脉冲在光纤中的传输,由于非线性作用,光谱展宽至900nm附近,由于光纤色散绝对值最低点沿光纤纵向变化,此时光纤色散绝对值最低点在910nm附近,继续产生新的光谱成份至700nm附近,重复以上步骤,最终获得高相干宽带的可见光超连续谱。
[0036]
上述适用于高相干宽带可见光超连续谱产生的非线性光纤,其制备方法包括以下步骤:
[0037]
步骤一:利用堆叠法拉制未填充液体的空芯微结构光纤。空芯微结构光纤的毛细管区3采用六边形堆积的方式,中间的纤芯区2’为光子晶体光纤中间的实芯棒用同尺寸的空芯毛细管代替。
[0038]
步骤二:对空芯微结构光纤进行拉锥处理,光纤粗端的尺寸为孔间距约1.5微米,占空比约0.3,在光谱展宽至900nm的光纤长度处,光纤的孔间距约为1.3微米,占空比约0.4,在光谱展宽至700nm的光纤长度处,光纤的孔间距约为0.7微米,占空比约0.7。
[0039]
步骤三:对拉锥后的空芯微结构光纤的粗端进行选择性封孔处理,封闭毛细管区3,只保留纤芯孔2’。选择性封孔的详细操作步骤见[chapter two in

hole control in photonic crystal fibres’,chen yong,university of bath,2013]
[0040]
步骤四:用注射泵或依靠纤芯毛细管的虹吸效应从封孔后的光纤粗端填充四氯化碳液体,形成纤芯区2。
[0041]
经试验表明,本发明初始光纤色散处于正常色散区且光纤色散绝对值最低点沿光纤纵向逐渐往短波移动,光纤纤芯填充高折射率物质提高光纤非线性。光纤的色散绝对值
最低点初始位于泵浦脉冲附近,随泵浦脉冲在光纤中的传输,由于非线性作用产生的光谱短波成份作为泵浦光继续在光纤的色散绝对值最低点附近泵浦,产生新的光谱成份,最终获得高相干宽带的可见光超连续谱。该非线性光纤可以更好的匹配泵浦激光与非线性光纤,实现高相干宽带可见光超连续谱的产生。