首页 > 三农技术 专利正文
一种植物生殖发育的光照调控系统的制作方法

时间:2022-02-15 阅读: 作者:专利查询

一种植物生殖发育的光照调控系统的制作方法

1.本发明属于植物照明技术领域,尤其涉及一种植物生殖发育的光照调控系统。


背景技术:

2.目前,植物生长发育受光照、温度、水分、养分及二氧化碳浓度等环境因素的影响,而光照在植物的整个生命周期中起重要作用。其机理是:植物通过外界光子的激发完成光合作用过程,从而影响其生长发育形态建成、果实着色、物质代谢积累及基因表达等。光调控是一种科学有效精准智能绿色无公害的调控手段,植物在人工光环境下的光合速率往往比在自然光下高;因此,采用人工光调控手段对植物生产有着积极促进作用,可满足植物正常的生长发育对光照的需求,缩短瓜果蔬菜的成熟时间,减少病虫害及畸形果,增加果实单重和产量,还可提升观赏花卉的鲜艳度,控制开花时间,满足人们需求。
3.然而现有技术主要集中于灯光装置的研究,却忽略了如何智能化的利用现有装置进行自适应的光照调控。
4.通过上述分析,现有技术存在的问题及缺陷为:现有技术没有智能化的利用现有装置进行自适应的光照调控方法。


技术实现要素:

5.针对现有技术存在的问题,本发明提供了一种植物生殖发育的光照调控系统。
6.本发明是这样实现的,一种植物生殖发育的光照调控系统,所述植物生殖发育的光照调控系统包括:
7.数据采集模块、自然光照采集模块、参数获取模块、中央控制模块、图像数据处理模块、图像特征提取模块、生长时期判断模块、匹配模块、植物生长位置确定模块、判断模块以及光照调控模块;
8.数据采集模块,与中央控制模块连接,用于采集植物的种类信息;同时用于利用摄像设备采集植物的图像信息;
9.生长时期判断模块,与中央控制模块连接,用于基于提取的植物高度信息或叶片、枝干特征信息进行植物当前生长期的判断;
10.所述基于提取的植物高度信息或叶片、枝干特征信息进行植物当前生长期的判断包括:
11.获取提取的植物图像的叶片、枝干特征向量;对得到的所述植物的叶片、枝干特征向量进行归一化处理;获取权威数据库中有关植物各个生长期的叶片、枝干图像数据构建数据集,并将所述数据集划分为训练集与测试集;构建基于卷积神经网络的植物生长期识别模型,并利用所述训练集训练构成的所述植物生长期识别模型;基于所述训练结果进行参数的优化与调整;同时利用测试集进行优化后的识别模型的测试;将所述归一化处理的植物特征向量输入到通过测试的识别模型中,并进行植物生长期的识别;获取采集的植物高度数据以及其他特征数据与数据库中预先存储的对应植物对应生长期的高度以及其他
特征图进行对比,验证所述识别结果是否准确;
12.匹配模块,与中央控制模块连接,用于基于植物当前生长期的判断结果匹配参数库中对应植物、对应生长期的相应光照、温湿度参数;
13.植物生长位置确定模块,与中央控制模块连接,用于确定植物的种植区域为温室或室外;同时用于确定植物距离地面的高度位置以及上方是否有遮挡物;所述遮挡物可为其他植物;
14.判断模块,与中央控制模块连接,用于基于标准光照参数,当前自然环境参数以及确定的植物生长时期、生长位置确定植物是否需要补光或遮阴;同时若需要补光确定具体的补光位置以及补光参数;
15.光照调控模块,与中央控制模块连接,用于基于判断结果利用可调节式无极灯进行植物的定点、大面积补光。
16.进一步,所述植物生殖发育的光照调控系统还包括:
17.自然光照采集模块,与中央控制模块连接,用于采集植物生长区域的自然光照参数;
18.参数获取模块,与中央控制模块连接,用于基于采集的植物种类信息从权威数据库中获取各个生长时期适宜光照、温湿度数据,并构建参数库;
19.中央控制模块,与数据采集模块、自然光照采集模块、参数获取模块、图像数据处理模块、图像特征提取模块、生长时期判断模块、匹配模块、植物生长位置确定模块、判断模块以及光照调控模块;用于利用单片机或控制器控制各个模块正常工作;
20.图像数据处理模块,与中央控制模块连接,用于对采集的植物图像数据进行预处理以及增强处理;
21.图像特征提取模块,与中央控制模块连接,用于基于采集的植物图像进行植物高度或叶片、枝干或其他特征提取。
22.进一步,所述光照参数包括:光照方式为连续光照或间隙光照、光环境中光谱特征、光照强度以及光照时间。
23.进一步,所述对得到的植物的叶片、枝干特征向量进行归一化处理包括:
24.首先,分别获取叶片、枝干的颜色特征、纹理特征、边缘特征以及其他明显特征;
25.其次,将所述叶片、枝干的颜色特征、纹理特征、边缘特征以及其他明显特征写入同一个特征向量中,并对所述特征向量进行归一化处理即可。
26.进一步,所述图像数据处理模块对采集的植物图像数据进行预处理以及增强处理包括:
27.(1)用平稳小波变换去除植物图像的高频信息,用primal sketch算法提取植物图像的结构信息,将所述植物图像划分为结构区域、纹理区域以及光滑区域;
28.(2)分别对结构区域、纹理区域以及光滑区域进行去噪,并将去噪结果合并,得到去噪后的植物图像;确定去噪后的植物图像的感光度信息;
29.(3)根据所述去噪后植物图像的感光度信息,确定所述去噪后植物图像对应的目标感光度特征图;
30.(4)将所述待去噪后植物图像和所述目标感光度特征图输入图像增强模型,得到增强处理后的植物图像。
31.进一步,步骤(3)中,所述根据所述去噪后植物图像的感光度信息,确定所述去噪后植物图像对应的目标感光度特征图包括:
32.将所述去噪后植物图像的感光度信息作为目标感光度信息;
33.根据所述目标感光度信息,生成所述目标感光度特征图。
34.进一步,所述图像特征提取模块基于采集的植物图像进行植物叶片特征提取包括:
35.获取植物叶片图像,并对植物叶片图像进行灰度值处理,提取相应的纹理特征;
36.将植物叶片灰度图经过阈值分割、形态学处理得到二值图像,提取植物叶片的形状特征;
37.采用植物叶片的狭长度、圆形度、矩形度以及矩向量作为植物叶片的形状特征,采用灰度共生矩阵法提取植物叶片的纹理特征。
38.本发明的另一目的在于提供一种信息数据处理终端,其特征在于,所述信息数据处理终端用于实现所述植物生殖发育的光照调控系统。
39.本发明的另一目的在于提供一种存储在计算机可读介质上的计算机程序产品,包括计算机可读程序,供于电子装置上执行时,提供用户输入接口以应用所述植物生殖发育的光照调控系统。
40.本发明的另一目的在于提供一种计算机可读存储介质,储存有指令,当所述指令在计算机上运行时,使得计算机应用所述植物生殖发育的光照调控系统。
41.结合上述的所有技术方案,本发明所具备的优点及积极效果为:本发明通过分析植物的种类以及所处生长期,智能化的确定植物所需的光照等参数,并分别采用适宜的光照方式、光照强度以及光照时间,能够有效缩短植物的育种周期或生长周期,提前了开花时间,采种周期大大缩短;同时本发明能够最大可能地满足植物对光的需求;真正实现植物生产的规模化、精准化、智能化、大大增加社会和经济效益。
附图说明
42.为了更清楚地说明本技术实施例的技术方案,下面将对本技术实施例中所需要使用的附图做简单的介绍,显而易见地,下面所描述的附图仅仅是本技术的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下还可以根据这些附图获得其他的附图。
43.图1是本发明实施例提供的植物生殖发育的光照调控系统结构示意图;
44.图中:1、数据采集模块;2、自然光照采集模块;3、参数获取模块;4、中央控制模块;5、图像数据处理模块;6、图像特征提取模块;7、生长时期判断模块;8、匹配模块;9、植物生长位置确定模块;10、判断模块;11、光照调控模块。
45.图2是本发明实施例提供的图像数据处理模块对采集的植物图像数据进行预处理以及增强处理的方法流程图。
46.图3是本发明实施例提供的根据所述去噪后植物图像的感光度信息,确定所述去噪后植物图像对应的目标感光度特征图的方法流程图。
47.图4是本发明实施例提供的图像特征提取模块基于采集的植物图像进行植物叶片特征提取的方法流程图。
48.图5是本发明实施例提供的基于提取的植物高度信息或叶片、枝干特征信息进行植物当前生长期的判断的方法流程图。
具体实施方式
49.为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
50.针对现有技术存在的问题,本发明提供了一种植物生殖发育的光照调控系统,下面结合附图对本发明作详细的描述。
51.如图1所示,本发明实施例提供的植物生殖发育的光照调控系统包括:
52.数据采集模块1,与中央控制模块4连接,用于采集植物的种类信息;同时用于利用摄像设备采集植物的图像信息;
53.自然光照采集模块2,与中央控制模块4连接,用于采集植物生长区域的自然光照参数;
54.参数获取模块3,与中央控制模块4连接,用于基于采集的植物种类信息从权威数据库中获取各个生长时期适宜光照、温湿度数据,并构建参数库;
55.中央控制模块4,与数据采集模块1、自然光照采集模块2、参数获取模块3、图像数据处理模块5、图像特征提取模块6、生长时期判断模块7、匹配模块8、植物生长位置确定模块9、判断模块10以及光照调控模块11;用于利用单片机或控制器控制各个模块正常工作;
56.图像数据处理模块5,与中央控制模块4连接,用于对采集的植物图像数据进行预处理以及增强处理;
57.图像特征提取模块6,与中央控制模块4连接,用于基于采集的植物图像进行植物高度或叶片、枝干或其他特征提取;
58.生长时期判断模块7,与中央控制模块4连接,用于基于提取的植物高度信息或叶片、枝干特征信息进行植物当前生长期的判断;
59.匹配模块8,与中央控制模块4连接,用于基于植物当前生长期的判断结果匹配参数库中对应植物、对应生长期的相应光照、温湿度参数;
60.植物生长位置确定模块9,与中央控制模块4连接,用于确定植物的种植区域为温室或室外;同时用于确定植物距离地面的高度位置以及上方是否有遮挡物;所述遮挡物可为其他植物;
61.判断模块10,与中央控制模块4连接,用于基于标准光照参数,当前自然环境参数以及确定的植物生长时期、生长位置确定植物是否需要补光或遮阴;同时若需要补光确定具体的补光位置以及补光参数;
62.光照调控模块11,与中央控制模块4连接,用于基于判断结果利用可调节式无极灯进行植物的定点、大面积补光。
63.本发明实施例提供的光照参数包括:光照方式为连续光照或间隙光照、光环境中光谱特征、光照强度以及光照时间。
64.如图2所示,本发明实施例提供的图像数据处理模块对采集的植物图像数据进行预处理以及增强处理包括:
65.s101,用平稳小波变换去除植物图像的高频信息,用primal sketch算法提取植物图像的结构信息,将所述植物图像划分为结构区域、纹理区域以及光滑区域;
66.s102,分别对结构区域、纹理区域以及光滑区域进行去噪,并将去噪结果合并,得到去噪后的植物图像;确定去噪后的植物图像的感光度信息;
67.s103,根据所述去噪后植物图像的感光度信息,确定所述去噪后植物图像对应的目标感光度特征图;
68.s104,将所述待去噪后植物图像和所述目标感光度特征图输入图像增强模型,得到增强处理后的植物图像。
69.如图3所示,本发明实施例提供的根据所述去噪后植物图像的感光度信息,确定所述去噪后植物图像对应的目标感光度特征图包括:
70.s201,将所述去噪后植物图像的感光度信息作为目标感光度信息;
71.s202,根据所述目标感光度信息,生成所述目标感光度特征图。
72.如图4所示,本发明实施例提供的图像特征提取模块基于采集的植物图像进行植物叶片特征提取包括:
73.s301,获取植物叶片图像,并对植物叶片图像进行灰度值处理,提取相应的纹理特征;
74.s302,将植物叶片灰度图经过阈值分割、形态学处理得到二值图像,提取植物叶片的形状特征;
75.s303,采用植物叶片的狭长度、圆形度、矩形度以及矩向量作为植物叶片的形状特征,采用灰度共生矩阵法提取植物叶片的纹理特征。
76.如图5所示,本发明实施例提供的基于提取的植物高度信息或叶片、枝干特征信息进行植物当前生长期的判断包括:
77.s401,获取提取的植物图像的叶片、枝干特征向量;对得到的所述植物的叶片、枝干特征向量进行归一化处理;获取权威数据库中有关植物各个生长期的叶片、枝干图像数据构建数据集,并将所述数据集划分为训练集与测试集;
78.s402,构建基于卷积神经网络的植物生长期识别模型,并利用所述训练集训练构成的所述植物生长期识别模型;基于所述训练结果进行参数的优化与调整;同时利用测试集进行优化后的识别模型的测试;
79.s403,将所述归一化处理的植物特征向量输入到通过测试的识别模型中,并进行植物生长期的识别;
80.s404,获取采集的植物高度数据以及其他特征数据与数据库中预先存储的对应植物对应生长期的高度以及其他特征图进行对比,验证所述识别结果是否准确。
81.本发明实施例提供的对得到的植物的叶片、枝干特征向量进行归一化处理包括:
82.首先,分别获取叶片、枝干的颜色特征、纹理特征、边缘特征以及其他明显特征;
83.其次,将所述叶片、枝干的颜色特征、纹理特征、边缘特征以及其他明显特征写入同一个特征向量中,并对所述特征向量进行归一化处理即可。
84.以上所述,仅为本发明较优的具体的实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,都应涵盖在本发明的保护范围之内。