首页 > 医药医疗 专利正文
CPAP系统的制作方法

时间:2022-02-18 阅读: 作者:专利查询

CPAP系统的制作方法
1相关申请的交叉引用本申请要求于2019年4月17日提交的美国临时申请第62/835,094号和于2019年9月9日提交的美国临时申请第62/897,558号的权益,这些申请各自的全部内容以引用的方式并入本文。2
背景技术
2.1
技术领域
本技术涉及呼吸相关障碍的筛查、诊断、监测、治疗、预防和改善中的一者或多者。本技术还涉及医疗装置或设备及其用途。2.2相关技术描述2.2.1人类呼吸系统及其障碍人体的呼吸系统促进气体交换。鼻和嘴形成患者的气道入口。气道包括一系列分支气管,当分支气管穿透更深入肺部时,其变得更窄、更短且更多。肺部的主要功能是气体交换,从而允许氧气从吸入空气进入静脉血并以相反方向排出二氧化碳。气管分成右主支气管和左主支气管,它们最终再分成末端细支气管。支气管构成传导气道,但是并不参与气体交换。气道的进一步分支通向呼吸细支气管,并最终通向肺泡。肺部的肺泡区域为发生气体交换的区域,且称为呼吸区。参见2012年由JohnB.West,LippincottWilliams&Wilkins出版的《呼吸系统生理学(RespiratoryPhysiology)》,第9版。存在一系列呼吸障碍。某些障碍可以通过特定事件来表征,例如呼吸中止、呼吸不足和呼吸过度。呼吸障碍的实例包括阻塞性睡眠呼吸中止症(OSA)、潮式呼吸(CSR)、呼吸功能不全、肥胖换气过度综合征(OHS)、慢性阻塞性肺病(COPD)、神经肌肉疾病(NMD)和胸壁障碍。阻塞性睡眠呼吸中止症(OSA)是一种睡眠呼吸障碍(SDB)形式,其特征在于包括上气道在睡眠期间的闭塞或阻塞的事件。其起因于睡眠期间异常小的上气道和肌肉张力在舌、软腭及后口咽壁的区域中的正常损失的组合。该病状导致受影响患者停止呼吸,典型地持续30秒至120秒的时间段,有时每晚200次至300次。这常常导致过度日间嗜睡,并可导致心血管疾病和脑损伤。并发症状为常见障碍,尤其在中年超重男性中,但是受到影响的人可能并未意识到这个问题。参见美国专利号4,944,310(Sullivan)。潮式呼吸(CSR)是另一种睡眠呼吸障碍形式。CSR是患者呼吸控制器的失调,其中存在称为CSR循环的盛衰通气的律动交替周期。CSR的特征在于动脉血的重复性缺氧和复氧。由于重复性氧不足,所以CSR有可能是有害的。在一些患者中,CSR与从睡眠中重复性觉醒相关,这导致严重的睡眠中断、交感神经活动增加以及后负荷增加。参见美国专利号6,532,959(Berthon-Jones)。呼吸衰竭是呼吸障碍的涵盖性术语,其中肺部不能吸入足够的氧气或者呼出足够的CO2来满足患者的需要。呼吸衰竭可以包括以下障碍中的一些或全部。患有呼吸功能不全(一种形式的呼吸衰竭)的患者可能在锻炼时经历异常呼吸短促。肥胖通气过度综合征(OHS)被定义为严重肥胖和清醒时慢性高碳酸血症的组合,不存在通气不足的其他已知原因。症状包括呼吸困难、晨起头痛和过度日间嗜睡。慢性阻塞性肺疾病(COPD)涵盖具有某些共同特征的一组下气道疾病中的任何一种。这些疾病包括空气流动阻力增加、呼吸的呼气阶段延长,以及肺的正常弹性丧失。COPD的实例为肺气肿和慢性支气管炎。COPD由慢性吸烟(主要风险因素)、职业暴露、空气污染和遗传因素所引起。症状包括:劳力性呼吸困难、慢性咳嗽和产生痰液。神经肌肉疾病(NMD)是一个广泛的术语,其涵盖直接通过内在肌肉病理学或间接通过神经病理学损害肌肉功能的许多疾病和病痛。一些NMD患者的特征在于进行性肌肉损伤,其导致行走能力丧失、乘坐轮椅、吞咽困难、呼吸肌无力,并最终死于呼吸衰竭。神经肌肉障碍可分为快速进行性和慢进行性:(i)快速进行性障碍:特征在于肌肉损伤历经数月恶化,且在几年内导致死亡(例如,青少年中的肌萎缩性侧索硬化(ALS)和杜氏肌肉营养不良症(DMD);(ii)可变或慢进行性障碍:特征在于肌肉损伤历经数年恶化,且仅轻微缩短预期寿命(例如,肢带型、面肩肱型和强直性肌肉营养不良症)。NMD的呼吸衰竭的症状包括:渐增的全身虚弱、吞咽困难、运动中和休息时呼吸困难、疲惫、嗜睡、晨起头痛,以及注意力难以集中和情绪变化。胸壁障碍是一组导致呼吸肌与胸廓之间无效率联接的胸廓畸形。这些障碍通常特征在于限制性缺陷,并且具有长期高碳酸血症性呼吸衰竭的可能。脊柱侧凸和/或脊柱后侧凸可引起严重的呼吸衰竭。呼吸衰竭的症状包括:运动中呼吸困难、外周水肿、端坐呼吸、反复胸部感染、晨起头痛、疲惫、睡眠质量差以及食欲不振。已经使用一系列治疗来治疗或改善此类病状。此外,其他健康个体可利用此类治疗来预防出现呼吸障碍。然而,这些治疗具有许多缺点。2.2.2治疗已经使用各种治疗来治疗上述一种或多种呼吸障碍,诸如持续气道正压通气(CPAP)治疗、无创通气(NIV)以及有创通气(IV)。持续气道正压通气(CPAP)治疗已被用于治疗阻塞性睡眠呼吸中止症(OSA)。作用机制是连续气道正压通气充当气动夹板,并且可以诸如通过向前并远离后口咽壁推挤软腭和舌来防止上气道闭塞。通过CPAP治疗来治疗OSA可以是自愿的,因此如果患者发现用于提供此类治疗的装置为:不舒适、难以使用、昂贵和不美观中的任一者或多者,则患者可选择不依从治疗。无创通气(NIV)通过上气道向患者提供通气支持以帮助患者呼吸和/或通过完成呼吸功中的一些或全部来维持身体内适当的氧水平。通气支持经由无创患者接口提供。NIV已被用于治疗CSR以及诸如OHS、COPD、NMD和胸壁障碍等形式的呼吸衰竭。在一些形式中,可以改善这些治疗的舒适性和有效性。有创通气(IV)为不能够自己有效呼吸的患者提供通气支持,并且可以使用气切管提供。在一些形式中,可以改善这些治疗的舒适性和有效性。2.2.3治疗系统这些治疗可以由治疗系统或装置提供。此类系统和装置也可以用于在不治疗的情况下筛查、诊断或监测病症。治疗系统可以包括呼吸压力治疗装置(RPT装置)、空气回路、湿化器、患者接口和数据管理。治疗系统的另一种形式是下颌再定位装置。2.2.3.1患者接口患者接口可以用于将呼吸设备接合到其佩戴者,例如通过向气道的入口提供空气流。空气流可以经由面罩提供到患者的鼻和/或嘴里、经由管提供到患者的嘴里或经由气切管提供到患者的气管中。根据待施加的治疗,患者接口可与例如患者面部的区域形成密封,从而促使气体以与环境压力有足够差异的压力(例如,相对于环境压力约10cmH2O的正压)进行输送,以实现治疗。对于其他形式的治疗,诸如氧气输送,患者接口可以不包括足以有利于将约10cmH2O的正压下的气体供给输送至气道的密封。某些其他面罩系统可能在功能上不适用于本领域。例如,单纯的装饰性面罩可能不能维持适合的压力。用于水下游泳或潜水的面罩系统可以配置为防止水从外部高压流入,而非在内部维持比环境高的压力下的空气。某些面罩可能在临床上不利于本技术,例如在它们阻挡气流通过鼻子并且仅允许它通过嘴部的情况下。如果某些面罩需要患者将一部分面罩结构插入在他们的嘴中来通过他们的嘴唇形成并维持密封,则它们可能对于本技术而言是不舒适的或者不能实现的。某些面罩可能对于在睡眠时使用是不能实现的,例如在头在枕头上侧卧在床上睡眠时。患者接口的设计提出了若干挑战。面部具有复杂的三维形状。鼻和头部的尺寸和形状显著地因人而异。由于头部包括骨、软骨以及软组织,所以面部的不同区域对机械力反应不同。下颌或下颌骨可以相对于头骨的其他骨骼移动。整个头部可以在呼吸疗法时间段的过程中移动。由于这些挑战,一些面罩面临以下问题中的一个或多个:突兀、不美观、昂贵、不相称、难以使用以及特别是当佩戴很长一段时间时或者当患者不熟悉系统时不舒适。尺寸不对的面罩可以引起依从性降低、舒适性降低以及患者预后变差。仅设计用于飞行员的面罩、设计成为个人防护设备的一部分的面罩(例如过滤面罩)、SCUBA面罩,或设计用于施加麻醉剂的面罩对于其原始应用是可以接受的,但是对于长时期(例如几个小时)佩戴,这种面罩却没有理想的那么舒适。这种不适可能导致患者对治疗的依从性降低。如果在睡眠期间佩戴面罩,则更是如此。假设患者依从治疗,CPAP治疗对治疗某些呼吸障碍非常有效。如果面罩不舒适或难以使用,则患者可能不依从治疗。由于通常建议患者定期清洗他们的面罩,如果面罩难以清洗(例如,难以组装或拆卸),则患者可能不会清洗他们的面罩,这可能影响患者的依从性。虽然用于其他应用(例如飞行员)的面罩可能不适合用于治疗睡眠呼吸障碍,但是被设计用于治疗睡眠呼吸障碍的面罩可以适用于其他应用。基于这些原因,用于在睡眠期间输送CPAP的患者接口形成了不同的领域。2.2.3.2呼吸压力治疗(RPT)装置呼吸压力治疗(RPT)装置可单独使用或作为系统的一部分使用以输送上述多种治疗中的一种或多种,例如通过操作所述装置以产生用于输送至气道接口的空气流。空气流可以被加压。RPT装置的实例包括CPAP装置和呼吸机。空气压力发生器在一系列应用中是已知的,例如工业规模的通气系统。然而,医学应用的空气压力发生器具有未由更普遍的空气压力发生器满足的特定要求,诸如医疗装置的可靠性、尺寸和重量要求。此外,即使被设计用于医疗的装置也可具有关于以下一个或多个的缺点:舒适性、噪声、易用性、功效、尺寸、重量、可制造性、成本和可靠性。某些RPT装置的特殊要求的实例是噪声。现有RPT装置的噪声输出级别表(仅为一个样本,在CPAP模式下使用ISO3744中规定的测试方法在10cmH2O下测量)。RPT装置名称A加权的声压级别dB(A)年(约)C系列TangoTM31.92007具有湿化器的C系列TangoTM33.12007S8EscapeTMII30.52005具有H4iTM湿化器的S8EscapeTMII31.12005S9AutoSetTM26.52010具有H5i湿化器的S9AutoSetTM28.62010一种已知的用于治疗睡眠呼吸障碍的RPT装置是由瑞思迈有限公司(ResMedLimited)制造的S9睡眠治疗系统。RPT装置的另一个实例是呼吸机。呼吸机诸如瑞思迈StellarTM系列的成人和儿科呼吸机可以为一系列患者为对创伤性和无创性非依赖性通气提供支持以用于治疗多种病状,诸如但不限于NMD、OHS和COPD。瑞思迈EliséeTM150呼吸机和瑞思迈VSIIITM呼吸机可为适合成人或儿科患者的创伤性和无创性依赖性通气提供支持以用于治疗多种病状。这些呼吸机提供具有单分支或双分支回路的体积和气压通气模式。RPT装置通常包括压力发生器,诸如电动机驱动的鼓风机或压缩气体贮存器,并且被配置为将空气流供应至患者的气道。在一些情况下,可在正压下将空气流供应到患者的气道。RPT装置的出口经由空气回路连接到诸如上文所述的患者接口。装置的设计者可能呈现了可做出的无限数目的选择。设计标准常常发生冲突,这意味着某些设计选择远非常规或不可避免。此外,某些方面的舒适性和功效可能对一个或多个参数方面的小且微妙的改变高度敏感。2.2.3.3湿化器输送没有加湿的空气流可能导致气道干燥。使用具有RPT装置和患者接口的湿化器产生加湿气体,使鼻黏膜的干燥最小化并增加患者气道舒适度。此外,在较冷的气候中,通常施加到患者接口中和患者接口周围的面部区域的暖空气比冷空气更舒适。已知一系列人工加湿装置和系统,但是它们可能无法满足医用湿化器的特殊要求。在需要时,通常在患者可能睡着或休息处(例如在医院),医用湿化器用于增加空气流相对于环境空气的湿度和/或温度。用于床边放置的医用湿化器可以很小。医用湿化器可以被配置为仅加湿和/或加热输送至患者的空气流,而不加湿和/或加热患者的周围环境。基于房间的系统(例如桑拿浴室、空调或蒸发冷却器),例如,也可以加湿患者呼吸的空气,然而这些系统也会加湿和/或加热整个房间,这可能引起居住者的不适。此外,医用湿化器可具有比工业湿化器更严格的安全限制。虽然许多医用湿化器是已知的,但它们可具有一个或多个缺点。一些医用湿化器可能提供不充分的加湿,一些会难以或不便由患者使用。2.2.3.4数据管理可能出于临床原因来获得数据以确定被开具呼吸治疗的患者是否“依从”,例如患者根据一个或多个“依从规则”使用了他们的RPT装置。CPAP治疗的依从规则的一个实例是为了认为患者是依从的,要求患者使用RPT装置,每晚至少四小时,持续至少21或30个连续天。为了确定患者的依从性,RPT装置的提供者(诸如健康护理提供者)可手动获得描述使用RPT装置进行患者治疗的数据,计算在预定时间段内的使用并且与依从规则相比较。一旦医疗保健供应商已经根据依从规则确定患者已经使用了他们的RPT装置,医疗保健供应商可以通知第三方该患者是依从的。患者治疗存在可得益于治疗数据与第三方或外部系统通信的其他方面。通信并管理此类数据的现有方法可能是以下一种或多种:昂贵的、耗时的且容易出错的。3技术实现要素:本技术旨在提供用于筛查、诊断、监测、改善、治疗或预防呼吸障碍的医疗装置,其具有改善的舒适性、成本、功效、易用性和可制造性中的一者或多者。本技术的第一方面涉及用于筛查、诊断、监测、改善、治疗或预防呼吸障碍的设备。本技术的另一方面涉及用于筛查、诊断、监测、改善、治疗或预防呼吸障碍的方法。本技术的某些形式的一个方面是用于提供改善患者对呼吸治疗的依从性的方法和/或设备。本技术的一种形式的一个方面是一种用于制造设备的方法。本技术的某些形式的一个方面是易于使用的医疗装置,例如由未经医疗训练的人,由具有有限灵巧性、视力的人或由在使用这种类型的医疗装置中具有有限经验的人易于使用。本技术的一种形式的一个方面为一种可由个人携带(例如在个人家庭周围)的便携式RPT装置。本技术的一种形式的一个方面是一种患者接口,其可以在患者的家中清洗,例如在肥皂水中清洗,而不需要专门的清洁设备。本技术的一种形式的一个方面是一种湿化器罐,其可以在患者的家中清洗,例如在肥皂水中清洗,而不需要专门的清洁设备。本技术的一种形式的一个方面涉及呼吸治疗设备,所述呼吸治疗设备包括:正压下的空气流的源,底盘或壳体,该底盘或壳体被构造和布置成在使用中相对于该源位置固定,入口气动连接,入口气动连接被构造成连接到该源上以便在使用中以能够密封的方式接收来自该源的正压力下的空气流,用于在使用中保持水体的容器,该容器被配置成引导空气流,使得在使用中水蒸汽可以从水体转移至空气流以增加空气流的绝对湿度,该容器包括至少部分地由热导率相对较高的材料构成的壁,加热元件,温度传感器,用于控制加热元件的控制器,以及用于接收绝对湿度增加的空气流的出口气动连接结构。底盘或壳体被配置为将容器保持在相对于加热元件靠近的位置,使得热能可以从加热元件传递到水体,以增加空气流的绝对湿度。控制器被构造和布置成使得加热元件通电以加热水而不使水沸腾。呼吸治疗设备包括密封装置,使得在使用中,在出口气动连接结构处接收的绝对湿度增加的空气流相对于环境具有正压。本技术的另一方面涉及一种CPAP系统,其包括湿化器、患者接口,和用于将加湿空气输送到患者接口的空气输送管。在一个实例中,湿化器与被构造成产生正压下的空气流的RPT装置集成。本技术的另一方面涉及一种湿化器,该湿化器包括水贮存器,水贮存器包括被构造成保持一定体积的水的空腔,以及水贮存器底座,水贮存器底座被构造和布置成在操作位置接纳水贮存器。本技术的另一方面涉及一种用于加湿可呼吸气流的设备。该设备包括水贮存器和水贮存器底座,水贮存器底座形成空腔,该空腔被构造和布置成在操作位置接纳水贮存器。水贮存器包括贮存器基部,贮存器基部包括被构造成用于容纳一定体积的水的空腔。贮存器基部包括主体和设置于主体的热传导性部分。热传导性部分包括组合的分层布置,该组合的分层布置包括金属板和薄膜。薄膜包括非金属材料并且壁厚小于约1mm。薄膜适于形成水贮存器的暴露于一定体积的水的至少底部内表面,并且金属板适于形成水贮存器的底部外表面。水贮存器底座包括加热板,加热板适于在操作位置与水贮存器的金属板热接触,以允许热量从加热板热传递到一定体积的水。本技术的另一方面涉及一种用于加湿可呼吸气流的设备。该设备包括水贮存器,水贮存器包括被构造成用于容纳一定体积的水的空腔,水贮存器底座,水贮存器底座被构造和布置成在操作位置中接纳水贮存器,以及引导布置,引导布置被构造和布置成用于引导水贮存器进入和离开操作位置。水贮存器包括传导性部分,并且水贮存器底座包括加热组件,加热组件适于在操作位置与水贮存器的传导性部分热接合,以允许热量从加热组件热传递到一定体积的水。引导布置包括沿前-后方向和下-上方向延伸的路径。本技术的另一方面涉及一种用于加湿可呼吸气流的设备。该设备包括水贮存器,水贮存器包括被构造成用于容纳一定体积的水的空腔,水贮存器底座,水贮存器底座被构造和布置成在操作位置中接纳水贮存器,以及空气输送管,空气输送管被配置成将已经在水贮存器中加湿的可呼吸气流传送到患者接口。空气输送管被构造和布置成与水贮存器形成直接气动密封。本技术的另一方面涉及一种水贮存器,其包括入口管,入口管提供用于接收可呼吸气流的入口,和出口管,出口管提供用于输送加湿的可呼吸气流的出口,其中,入口管包括入口密封,并且出口管包括出口密封。本技术的另一方面涉及一种用于加湿可呼吸气流的设备的水贮存器。水贮存器包括入口管,入口管被布置成提供用于接收进入水贮存器的可呼吸气流的入口,和出口管,出口管被布置成提供用于输送来自水贮存器的加湿的可呼吸气流的出口。入口管和出口管中的至少一者在沿其长度的至少一个点处改变参数。例如,入口管和出口管中的至少一者可以至少在沿其长度的一个点处改变方向和/或横截面积。在更具体的实例中,入口管、出口管或两者可以沿其长度弯曲和/或沿其长度改变其横截面。变化可以是突然的(阶进的)或逐渐的。本技术的另一方面涉及一种水贮存器,其包括传导性部分,传导性部分适于与加热组件热接合,其中,传导性部分包括在第一平面中延伸的第一部分和在偏离第一平面的第二平面中延伸的第二部分。本技术的另一方面涉及一种用于加湿可呼吸气流的设备。该设备包括水贮存器、水贮存器底座,水贮存器底座形成空腔,该空腔被构造和布置成在操作位置接纳水贮存器,以及空气输送管,其中,将水贮存器插入水贮存器底座中/从水贮存器底座中移除独立于将空气输送管与水贮存器底座接合/脱离。本技术的另一方面涉及一种用于水贮存器底座的加热组件,该加热组件包括加热板、加热元件和布置在加热板与加热元件之间的导热垫,以例如增强从加热元件到加热板的热传导性。本技术的另一方面涉及一种用于加湿可呼吸气流的设备。该设备包括水贮存器,水贮存器包括被构造成用于容纳一定体积的水的空腔,水贮存器包括传导性部分,以及水贮存器底座,水贮存器底座被构造和布置成在操作位置中接纳水贮存器,水贮存器底座包括加热组件,加热组件适于在操作位置与水贮存器的传导性部分热接合,以允许热量从加热组件热传递到一定体积的水。加热组件包括与水贮存器的传导性部分热接触的加热板、加热元件和布置在加热板与加热元件之间的导热垫。导热垫包括柔韧材料,该柔韧材料被构造和布置成接合加热板和加热元件,以去除加热板与加热元件之间的空气间隙和空间,从而提高热传导性。本技术的另一方面涉及一种水贮存器,其包括传导性部分,传导性部分适于与加热组件热接合,其中,传导性部分包括金属板、非金属薄膜,或金属板和非金属薄膜的组合分层布置中的一者。在一个实例中,传导性部分可以包括圆形或非圆形形状。本技术的另一方面涉及在空气输送管中包括一个或多个电路部件,用于基于电路部件的特性来识别空气输送管的类型。本技术的另一方面涉及一种用于加湿可呼吸气流的设备。该设备包括水贮存器,水贮存器包括被构造成用于容纳一定体积的水的空腔,水贮存器底座,水贮存器底座被构造和布置成在操作位置中接纳水贮存器,以及空气输送管,空气输送管被配置成将已经在水贮存器中加湿的可呼吸气流传送到患者接口。空气输送管包括底座连接件,该底座连接件包括接触组件。接触组件包括电触头,电触头适于在设备处于操作构造时与设置于水贮存器底座的相应的电触头接合。接触组件包括电特性,电特性用作空气输送管或患者接口的一个或多个参数的标识。本技术的另一方面涉及处理电路,该处理电路被配置为基于联接到用于加湿可呼吸气流的设备的空气输送管中的无源电路部件的被测量的特性来识别空气输送管的类型。本技术的另一方面涉及处理电路,该处理电路被配置为基于联接到用于加湿可呼吸气流的设备的空气输送管中的电路的测量特性来识别空气输送管的类型。电路的特性包括空气输送管中的一个或多个加热元件的电阻值和/或空气输送管中的一个或多个传感器的电阻值。本技术的另一方面涉及处理电路,该处理电路被配置为基于设置在联接到用于加湿可呼吸气流的设备的空气输送管中的第一电阻器的电阻值和第二电阻器的电阻值来识别空气输送管的类型。第一电阻器耦接空气输送管中的第一对触头,第二电阻器耦接空气输送管中的第二对触头。本技术的另一方面涉及包括一个或多个滤波器,一个或多个滤波器耦接到至少部分地设置在空气输送管中以用于感测空气输送管中的温度变化的传感器电路。本技术的另一方面涉及包括低通滤波器,低通滤波器耦接到至少部分地设置在空气输送管中以用于感测空气输送管中的温度变化的传感器电路。滤波器可以被配置为过滤施加到空气输送管中的一个或多个加热元件的PWM信号的脉冲频率。本技术的另一方面涉及包括一个或多个低通滤波器,一个或多个低通滤波器耦接到至少部分地设置在空气输送管中以用于感测空气输送管中的温度变化的传感器电路,其中,向传感器电路周期性地施加感测信号。本技术的另一方面涉及包括耦接到包括在空气输送管中的传感器的一端的第一低通滤波器和耦接到传感器的第二端的第二低通滤波器,其中,以预定间隔向传感器施加感测信号,以用于感测空气输送管中的温度变化。本技术的另一方面涉及包括第一低通滤波器和第二低通滤波器,第一低通滤波器耦接到分压网络的第一输出以用于检测设置在空气输送管中的传感器的操作参数,第二低通滤波器耦接到分压网络的第二输出。本技术的另一方面涉及一种用于向患者接口提供加湿加压可呼吸气体供给的设备。该设备包括流发生器,其被配置为对可呼吸气体供给加压,湿化器,其被配置为提供水蒸汽以加湿加压的可呼吸气体供给,加热管,其被配置为能够连接到湿化器以加热加湿的可呼吸气体供给并将其输送到患者接口,传感器,其被配置为测量加热管中的加湿的可呼吸气体供给的性质,控制器,其被配置为控制提供给加热管的功率并且控制流发生器的操作,以及联接在传感器与控制器之间的一组低通滤波器和/或联接在传感器与地之间的一组低通滤波器。本技术的另一方面涉及一种用于加湿可呼吸气流的设备,包括水贮存器,水贮存器包括被构造成用于容纳一定体积的水的空腔,水贮存器底座,水贮存器底座被构造和布置成在操作位置中接纳水贮存器,空气输送管,空气输送管被配置成将已经在水贮存器中加湿的可呼吸气流传送到患者接口,以及中间部件,中间部件以能够移除且不能旋转的方式联接至水贮存器底座。中间部件被配置为将水贮存器气动地连接到空气输送管。中间部件包括由相对刚性的材料制成的单件式构造,包括适于与水贮存器接合的入口端和适于与空气输送管接合的出口端。空气输送管包括底座连接件,底座连接件被构造和布置成与水贮存器底座形成卡口式连接,底座连接件将空气输送管与水贮存器底座机械地并且电气地连接。本技术的另一方面涉及一种用于加湿可呼吸气流的水贮存器,包括贮存器基部,贮存器盖,以及铰接接头,铰接接头用于将贮存器盖铰接地联接到贮存器基部上以在打开位置与关闭位置之间进行铰接移动。铰接接头包括一对铰接销,铰接销各自被配置为与一对槽缝中的相应一个接合以实现铰接移动。一对铰接销中的每一个包括呈圆的主要部分的横截面。本技术的另一方面涉及一种用于加湿可呼吸气流的设备。该设备包括水贮存器,水贮存器包括被构造成用于容纳一定体积的水的空腔,水贮存器底座,水贮存器底座被构造和布置成在操作位置中接纳水贮存器,以及引导布置,引导布置被构造和布置成用于引导水贮存器进入与水贮存器底座的操作位置。水贮存器包括热量传导性部分。水贮存器底座包括加热组件,加热组件适于在操作位置与水贮存器的热量传导性部分热接合,以允许热量从加热组件热传递到一定体积的水。引导布置包括位于水贮存器的每一侧上的引导导轨和位于水贮存器底座的每一侧上的引导槽缝,每个引导导轨被配置成与相应的引导槽缝接合。引导布置还包括设置于水贮存器的前缘的一个或多个偏置边缘或突片,一个或多个偏置边缘或突片被配置成当水贮存器到达操作位置时,接合在设置于水贮存器底座的相应的邻接边缘下方。该接合将水贮存器的前部向下偏置并锁定/防止其沿向上方向运动。本技术的另一方面涉及一种用于加湿可呼吸气流的设备。该设备包括水贮存器,水贮存器包括被构造成保持一定体积的水的空腔,以及水贮存器底座,水贮存器底座被构造和布置成在操作位置接纳水贮存器。水贮存器包括热量传导性部分,并且水贮存器底座包括加热组件,加热组件适于在操作位置与水贮存器的热量传导性部分热接合,以允许热量从加热组件热传递到一定体积的水。加热组件包括加热板,加热板包括基部表面以与水贮存器的热量传导性部分热接触,以及回弹密封和/或支撑构件以将加热板有回弹性地悬置在水贮存器底座内。回弹密封和/或支撑构件包括一个或多个中空管,一个或多个中空管中的每一个的轴线大致垂直于加热板的基部表面。本技术的另一方面涉及一种用于加湿可呼吸气流的设备。该设备包括水贮存器,水贮存器包括被构造成用于容纳一定体积的水的空腔,水贮存器底座,水贮存器底座被构造和布置成在操作位置中接纳水贮存器,空气输送管,空气输送管被配置成将已经在水贮存器中加湿的可呼吸气流传送到患者接口,以及中间部件,中间部件被布置成用于以能够移除且不能旋转的方式联接到水贮存器底座和空气输送管上。中间部件被配置为当处于操作构造时将空气输送管气动地连接至水贮存器。本技术的另一方面涉及一种用于加湿可呼吸气流的水贮存器,包括水贮存器基部,水贮存器基部包括被构造成容纳一定体积的水的空腔。贮存器基部包括主体和设置于主体的热传导性部分。热传导性部分可以包括薄膜。薄膜包括非金属材料并且壁厚小于约1mm。主体包括塑料材料,薄膜包括与主体形成嵌入成型连接的非最终形式。在薄膜嵌入成型在主体中之后,薄膜形成为其最终形式(例如通过冲压、真空成形或热真空成形)。本文描述的方法、系统、装置和设备可以被实施以改进处理器(例如专用计算机、呼吸监测器和/或呼吸治疗设备的处理器)的功能。此外,所描述的方法、系统、装置和设备可以在呼吸病症(包括例如睡眠呼吸障碍)的自动化管理、监测和/或治疗的
技术领域
中提供改进。当然,这些方面的一部分可以形成本技术的子方面。子方面和/或方面中的各个方面可以各种方式进行组合,并且还构成本技术的其他方面或子方面。考虑到以下详细描述、摘要、附图和权利要求书中包含的信息,本技术的其他特征将变得显而易见。4附图说明本技术在附图的各图中以举例而非限制的方式例示,附图中的相似参考数字指代相似元件,包括:4.1治疗系统图1A示出了一种系统,其包括以鼻枕的方式佩戴患者接口3000的患者1000从RPT装置4000接收正压下的空气供给。来自RPT装置4000的空气在湿化器5000中加湿,并沿着空气回路4170传送至患者1000。还示出了床伴1100。患者以仰卧睡姿睡眠。图1B示出了一种系统,其包括以鼻罩的方式佩戴患者接口3000的患者1000从RPT装置4000接收正压下的空气供给。来自RPT装置的空气在湿化器5000中加湿,并沿着空气回路4170传送至患者1000。图1C示出了一种系统,其包括以全面罩的方式佩戴患者接口3000的患者1000从RPT装置4000接收正压下的空气供给。来自RPT装置的空气在湿化器5000中加湿,并沿着空气回路4170传送至患者1000。患者以侧卧睡姿睡眠。4.2呼吸系统和面部解剖结构图2A示出了包括鼻腔和口腔、喉、声带、食道、气管、支气管、肺、肺泡囊、心脏和膈膜的人类呼吸系统的概略图。图2B示出了包括鼻腔、鼻骨、鼻外软骨、鼻翼大软骨、鼻孔、上唇、下唇、喉、硬腭、软腭、口咽、舌、会厌、声带、食道和气管的人类上气道的视图。4.3患者接口图3A示出了根据本技术的一种形式的呈鼻罩形式的患者接口。图3B示出了在一点处通过结构的横截面的示意图。指示了在该点处的向外法线。在该点处的曲率具有正号,并且当与图3C所示的曲率幅度相比时具有相对大的幅度。图3C示出了在一点处通过结构的横截面的示意图。指示了在该点处的向外法线。在该点处的曲率具有正号,并且当与图3B所示的曲率幅度相比时具有相对小的幅度。图3D示出了在一点处通过结构的横截面的示意图。指示了在该点处的向外法线。在该点处的曲率具有零值。图3E示出了在一点处通过结构的横截面的示意图。指示了在该点处的向外法线。在该点处的曲率具有负号,并且当与图3F所示的曲率幅度相比时具有相对小的幅度。图3F示出了在一点处通过结构的横截面的示意图。指示了在该点处的向外法线。在该点处的曲率具有负号,并且当与图3E所示的曲率幅度相比时具有相对大的幅度。图3G示出了结构的表面,其中该表面中具有一维孔。所示的平面曲线形成一维孔的边界。图3H示出了穿过图3G的结构的横截面。所示的表面界定了图3G的结构中的二维孔。图3I示出了图3G的结构的透视图,包括二维孔和一维孔。还示出了界定了图3G的结构中的二维孔的表面。4.4呼吸波形图4示出了人睡眠时的模型典型呼吸波形。4.5RPT装置和湿化器图5A示出了根据本技术的一种形式的RPT装置4000的分解透视图。图5B示出了根据本技术的一种形式的RPT装置4000的透视图,RPT装置4000包括具有消音器4124的出口罩。图5C示出了根据本技术的一种形式的具有集成湿化器5000的RPT装置4000的透视图,集成湿化器5000包括水贮存器5110。图5D是根据本技术的一种形式的RPT装置的气动路径的示意图。参考鼓风机和患者接口标示了上游和下游的方向。鼓风机被定义为位于患者接口的上游,患者接口被定义为位于鼓风机的下游,而不管在任何特定时刻的实际流动方向如何。位于鼓风机与患者接口之间的气动路径内的物品是位于鼓风机的下游和患者接口的上游。图5E是根据本技术的一种形式的RPT装置的电气部件的示意图。图5F是在根据本技术的一种形式的RPT装置中实施的算法的示意图。图5G示出了根据本技术的一种形式的湿化器的示意图。图6A是根据本技术的一个实例的包括水贮存器的集成的RPT装置和湿化器的透视图。图6B是图6A的集成的RPT装置和湿化器的透视图,其中从贮存器底座移除了水贮存器。图7是根据本技术的一个实例的气动块的透视图。图8A是根据本技术的一个实例的图6A的集成的RPT装置和湿化器的侧视图。图8B是沿图8A的线8B-8B截取的图8A的集成的RPT装置和湿化器的横截面视图。图8C是图8B所示的横截面视图的前视图。图8D是沿图8A的线8D-8D截取的图8A的集成的RPT装置和湿化器的横截面视图。图9是根据本技术的一个实例的包括圆形金属板的水贮存器的分解视图。图10A是根据本技术的一个实例的包括矩形金属板的湿化器贮存器的贮存器基部的顶部透视图。图10B是图10A的贮存器基部的底部透视图。图10C是图10A的贮存器基部的顶视图。图10D是图10A的贮存器基部的侧视图。图10E是图10A的贮存器基部的底视图。图10F是根据本技术的一个实例的沿图10C的线10F-10F截取的贮存器基部的横截面视图。图10G是图10F的贮存器基部的一部分的放大视图。图11A是根据本技术的一个实例的包括圆形金属板的湿化器贮存器的贮存器基部的顶部透视图。图11B是根据本技术的一个实例的沿图11A的线11B-11B截取的贮存器基部的横截面视图。图11C是图11B的贮存器基部的一部分的放大视图。图12A是根据本技术的一个实例的包括拉伸更深的矩形金属板的湿化器贮存器的贮存器基部的顶部透视图。图12B是根据本技术的一个实例的沿图12A的线12B-12B截取的贮存器基部的横截面视图。图12C是图12B的贮存器基部的一部分的放大视图。图13A是根据本技术的一个实例的包括矩形非金属薄膜的湿化器贮存器的贮存器基部的顶部透视图。图13B是根据本技术的一个实例的沿图13A的线13B-13B截取的贮存器基部的横截面视图。图13C是图13B的贮存器基部的一部分的放大视图。图14A是根据本技术的一个实例的包括圆形非金属薄膜的湿化器贮存器的贮存器基部的顶部透视图。图14B是根据本技术的一个实例的沿图14A的线14B-14B截取的贮存器基部的横截面视图。图14C是图14B的贮存器基部的一部分的放大视图。图15A是根据本技术的一个实例的湿化器贮存器的贮存器基部的顶部透视图,贮存器基部包括矩形金属板和非金属薄膜的组合的分层布置。图15B是根据本技术的一个实例的沿图15A的线15B-15B截取的贮存器基部的横截面视图。图15C是图15B的贮存器基部的一部分的放大视图。图16A是根据本技术的一个实例的湿化器贮存器的贮存器基部的顶部透视图,贮存器基部包括圆形金属板和非金属薄膜的组合的分层布置。图16B是根据本技术的一个实例的沿图16A的线16B-16B截取的贮存器基部的横截面视图。图16C是图16B的贮存器基部的一部分的放大视图。图17A是根据本技术的一个实例的湿化器贮存器的贮存器基部的顶部透视图,贮存器基部包括拉伸更深的矩形金属板和非金属薄膜的组合的分层布置。图17B是根据本技术的一个实例的沿图17A的线17B-17B截取的贮存器基部的横截面视图。图17C是图17B的贮存器基部的一部分的放大视图。图18A是根据本技术的一个实例的水贮存器的透视图。图18B是图18A的水贮存器的顶视图。图19A是根据本技术的一个实例的水贮存器的顶视图。图19B是图19A的水贮存器的侧视图。图19C是根据本技术的一个实例的沿图19A的线19C-19C截取的水贮存器的横截面视图,示出了入口管和出口管布置。图19D是根据本技术的一个实例的沿图19B的线19D-19D截取的水贮存器的横截面视图,示出了入口管和出口管布置。图19E是沿图19A的线19E-19E截取的水贮存器的截面视图,示出了根据本技术的一个实例的入口管和出口管布置。图19F是根据本技术的一个实例的沿图19A的线19F-19F截取的水贮存器的横截面视图,示出了入口管和出口管布置。图19G是根据本技术的一个实例的沿图19A的线19G-19G截取的水贮存器的横截面视图,示出了入口管和出口管布置,水贮存器旋转180度以示出由入口管和出口管布置提供的回溢保护。图19H-1是根据本技术的一个实例的用于水贮存器的能够移除的出口管布置的顶部透视图。图19H-2是图19G-1的能够移除的出口管布置的底部透视图。图19I是根据本技术的一个实例的用于水贮存器的能够移除的入口管和出口管布置的透视图。图20A是示出了根据本技术的一个实例的贮存器底座和空气输送管的透视图。图20B是示出了根据本技术的一个实例的贮存器底座的底座出口的剖切透视图。图20C是示出了根据本技术的一个实例的贮存器底座的底座出口的剖切前视图。图20D是示出了根据本技术的一个实例的贮存器底座和连接到贮存器底座的底座出口的空气输送管的透视图。图20E是示出了根据本技术的一个实例的贮存器底座和连接到贮存器底座的底座出口的空气输送管的另一透视图。图20F是示出了根据本技术的一个实例的贮存器底座和连接到贮存器底座的底座出口的空气输送管的另一透视图。图20G是示出了根据本技术的一个实例的贮存器底座和连接到贮存器底座的底座出口的空气输送管的沿图20F的线20G-20G截取的横截面视图。图20H是示出了根据本技术的一个实例的贮存器底座和连接到贮存器底座的底座出口的空气输送管的另一透视图。图20I是示出了根据本技术的一个实例的贮存器底座和连接到贮存器底座的底座出口的空气输送管的放大透视图。图20J是示出了根据本技术的一个实例的空气输送管及其与贮存器底座的底座出口的接触组件的电连接的透视图。图20K是示出了根据本技术的一个实例的贮存器底座和连接到贮存器底座的底座出口的空气输送管的放大剖切透视图。图20L是示出了根据本技术的一个实例的贮存器底座和与贮存器底座的底座出口分离的空气输送管的放大剖切透视图。图20M是示出了根据本技术的一个实例的贮存器底座和连接到贮存器底座的底座出口的空气输送管的横截面视图。图20N是图20M的贮存器底座和空气输送管的一部分的放大视图。图21是示出了根据本技术的一个实例的带有空气输送管的贮存器底座和连接到贮存器底座的水贮存器的示意图。图22A是示出了根据本技术的一个实例的空气输送管与水贮存器接合的透视图。图22B是图22A的空气输送管和水贮存器的另一透视图。图22C是图22A的空气输送管和水贮存器的顶视图。图23A是示出了根据本技术的一个实例的空气输送管的底座连接件的透视图。图23B是图23A的空气输送管的顶视图。图24A是示出了根据本技术的另一实例的空气输送管的底座连接件的透视图。图24B是图24A的空气输送管的另一透视图,其中无包覆成型的抓握部。图25A是根据本技术的一个实例的包括引导结构的贮存器底座(以剖视呈现)和水贮存器的透视图。图25B是图25A的贮存器底座和水贮存器的透视图,示出了水贮存器被插入贮存器底座。图26A是图25A的贮存器底座和水贮存器的侧视图,示出了水贮存器被插入贮存器底座。图26B是图25A的贮存器底座和水贮存器的侧视图,示出了水贮存器被插入贮存器底座。图27A是图25A的贮存器底座和水贮存器的横截面视图,示出了水贮存器被插入贮存器底座。图27B是图25A的贮存器底座和水贮存器的横截面视图,示出了水贮存器被插入贮存器底座。图28A是示出了根据本技术的一个实例的包括凹陷加热元件的贮存器底座的透视图。图28B是示出了根据本技术的一个实例的图28A的贮存器底座的加热元件的透视图。图28C是示出了图28A的贮存器底座和凹陷加热元件的放大横截面视图。图29是根据本技术的一个实例的水贮存器的底部透视图。图30是根据本技术的另一示例的包括引导结构的贮存器底座和水贮存器的侧视图,示出了水贮存器被插入贮存器底座。图31是图30A的贮存器底座和水贮存器的侧视图,示出了水贮存器被插入贮存器底座。图32A是图30的贮存器底座和水贮存器的横截面视图,示出了水贮存器被插入贮存器底座。图32B是图30的贮存器底座和水贮存器的横截面视图,示出了水贮存器被插入贮存器底座。图33A是示出了根据本技术的一个实例的用于水贮存器的闩锁的横截面视图。图33B是示出了根据本技术的一个实例的图33A的闩锁与贮存器底座接合的的横截面视图。图33C是示出了图33A的闩锁的另一横截面视图。图33D是示出了图33A的闩锁的另一横截面视图。图33E是示出了图33A的闩锁的透视图。图33F是示出了图33A的闩锁的另一透视图。图33G是示出了根据本技术的一个实例的用于接纳闩锁的水贮存器中的凹部的透视图。图34A是示出了根据本技术的一个实例的用于贮存器底座的加热组件的横截面视图。图34B是图34A的加热组件的分解视图。图34C是图34A的加热组件的另一横截面视图。图35A示出了根据本技术的一种形式的底座和管的示意性连接。图35B示出了根据本技术的一种形式的底座和管连接的电路图。图36示出了根据本技术的一种形式的底座和管的示意性连接。图37示出了针对100k热敏电阻器和10k热敏电阻器的示例性管NTC传感器在不同温度下的电阻变化。图38示出了根据本技术的另一种形式的底座和管的示意性连接。图39示出了根据本技术的另一种形式的底座和管的示意性连接。图40示出了根据本技术的一种形式的具有四线电路与底座耦接的管。图41示出了可以施加到加热元件的PWM信号和可以在感测电路中观察到的PWM感应信号的各部分的示例性信号图。图42示出了根据本技术的一种形式的包括低通滤波器的示例性分压网络。图43是示出了根据本技术的一个实例的贮存器底座、中间部件和空气输送管的透视图,空气输送管被定向以与中间部件以及设置于贮存器底座的锁定和接触组件接合。图44是示出了图43的贮存器底座和空气输送管的透视图,空气输送管与设置于贮存器底座的处于未锁定的接合位置的锁定和接触组件接合。图45是示出了图43的贮存器底座和空气输送管的透视图,空气输送管与设置于贮存器底座的处于锁定位置的锁定和接触组件接合。图46是示出了图43的贮存器底座、中间部件和空气输送管的透视图。图47是示出了图43的贮存器底座、中间部件、空气输送管以及贮存器底座的锁定和接触组件的分解图。图48是示出了图43的贮存器底座、中间部件、空气输送管以及贮存器底座的锁定和接触组件的另一分解图。图49是示出了图43的贮存器底座及其锁定和接触组件、中间部件和空气输送管的分解图。图50是图43的贮存器底座的放大升高前透视图。图51是示出了设置于图43的贮存器底座的锁定和接触组件的放大透视图。图52是示出了设置于图43的贮存器底座的锁定和接触组件的另一放大透视图。图53是示出了根据本技术的一个实例的中间部件的后透视图。图54是图53的中间部件的前视图。图55是图53的中间部件的顶视图。图56是图53的中间部件的分解图。图57是示出了用于图43的贮存器底座的锁定和接触组件和中间部件的放大前透视图。图58是图57的锁定和接触组件和中间部件的前视图。图59是示出了根据本技术的一个实例的用于贮存器底座的锁定和接触组件的透视图。图60是图59的锁定和接触组件的分解图。图61是图59的锁定和接触组件的另一分解图。图62是图59的锁定和接触组件的透视图,其中盖被移除。图63是图59的锁定和接触组件的前视图。图64是根据本技术的一个实例的用于空气输送管的底座连接件的透视图。图65是图64的底座连接件的前视图。图66是穿过图65的线66-66的横截面视图。图67是穿过图65的线67-67的横截面视图。图68是图64的底座连接件的分解图。图69是示出了根据本技术的一个实例的空气输送管的底座连接件与中间部件和设置于贮存器底座的锁定和接触组件的接合的前视图,底座连接件处于未锁定的接合位置。图70是与图69相关的横截面视图,示出了处于未锁定的接合位置的基座连接器。图71是与图69相关的顶视图,示出了处于未锁定的接合位置的底座连接件。图72是与图69相关的横截面视图,示出了处于未锁定的接合位置的基座连接器。图73是示出了根据本技术的一个实例的空气输送管的底座连接件与中间部件和设置于贮存器底座的锁定和接触组件的接合的前视图,底座连接件处于锁定位置。图74是与图73相关的横截面视图,示出了处于锁定位置的底座连接件。图75是与图73相关的顶视图,示出了处于锁定位置的底座连接件。图76是与图73相关的横截面视图,示出了处于锁定位置的底座连接件。图77是与图73相关的侧视图,示出了处于锁定位置的底座连接件。图78是与图73相关的横截面视图,示出了处于锁定位置的底座连接件。图79是根据本技术的一个实例的集成的RPT装置和湿化器的透视图,其中水贮存器被插入贮存器底座。图80是图79的集成的RPT装置和湿化器的透视图,其中从贮存器底座移除了水贮存器。图81是图79的集成的RPT装置和湿化器的另一透视图,其中从贮存器底座移除了水贮存器。图82是根据本技术的一个实例的水贮存器的顶部透视图,水贮存器处于关闭位置。图83是图82的水贮存器的底部透视图。图84是处于打开位置的图82的水贮存器的顶部透视图。图85是图82的水贮存器的盖的分解图。图86是示出了图82的水贮存器的盖和基部的分解图。图87是示出了图86的盖的一部分的放大视图。图88是示出了图86的基部的一部分的放大视图。图89是处于打开位置的图82的水贮存器的侧视图。图90是示出了图89的水贮存器的一部分的横截面视图。图91是处于关闭位置的图82的水贮存器的侧视图。图92是示出了图91的水贮存器的一部分的横截面视图。图93是示出了图91的水贮存器的一部分的另一横截面视图。图94是图82的水贮存器的侧视图,示出了根据本技术的一个实例的盖与基部的组装。图95是示出了图94的水贮存器的一部分的横截面视图。图96是图82的水贮存器的侧视图,示出了根据本技术的一个实例将盖从基部拆卸的初始阶段。图97是示出了图96的水贮存器的一部分的横截面视图。图98是沿图79的线98-98截取的图79的集成的RPT装置和湿化器的横截面视图。图99是示出了图98的集成的RPT装置和湿化器的一部分的放大横截面视图。图100是沿图79的线100-100截取的图79的集成的RPT装置和湿化器的横截面视图。图101是示出了图100的集成的RPT装置和湿化器的一部分的放大视图。图102是示出了图100的集成的RPT装置和湿化器的另一部分的放大视图。图103是示出了根据本技术的一个实例的贮存器底座的加热组件的分解图。图104是示出了用于图103的加热组件中的加热板的支撑结构的分解图。图105是沿图81的线105-105截取的横截面视图,示出了根据本技术的一个实例的加热组件,其中从贮存器底座移除了水贮存器。图106是示出了图105的加热组件的一部分的放大横截面视图。图107是图98的一部分的放大横截面视图,示出了根据本技术的一个实例的加热组件,其中水贮存器被插入贮存器底座。图108是示出了图107的加热组件的一部分的放大横截面视图。图109是图108的一部分的放大横截面视图,示出了由根据本技术的一个实例的加热组件提供排水。图110是示出了根据本技术的一个实例的贮存器底座、中间部件和空气输送管的透视图,空气输送管被定向以与中间部件以及设置于贮存器底座的接触组件接合。图111是示出了图110的贮存器底座、中间部件和空气输送管的透视图,空气输送管与中间部件完全接合。图112是示出了图110的中间部件与贮存器底座接合的透视图。图113是示出了图110的贮存器底座、中间部件和空气输送管的分解图。图114是示出了图110的贮存器底座的底座出口的透视图,其中移除了中间部件。图115A是示出了设置于图110的贮存器底座的中间部件和接触组件的透视图。图115B是沿图112的线115B-115B截取的横截面视图,示出了根据本技术的一个实例的中间部件与贮存器底座的连接。图115C1、115C2和115C3是沿图110的线115C-115C截取的横截面视图,示出了根据本技术的一个实例的中间部件与贮存器底座的组装顺序。图115D是沿图112的线115D-115D截取的横截面视图,示出了根据本技术的一个实例的中间部件与贮存器底座的连接。图115E是沿图115D的线115E-115E截取的横截面视图,示出了根据本技术的一个实例的中间部件与贮存器底座的连接。图116是根据本技术的一个实例的中间部件的顶部透视图。图117是图116的中间部件的底部透视图。图118是图116的中间部件的前视图。图119是图116的中间部件的顶视图。图120是图116的中间部件的分解图。图121是示出了设置于图110的贮存器底座的接触组件的透视图,其中移除了中间部件。图122是图121的接触组件的分解图。图123是根据本技术的一个实例的用于空气输送管的底座连接件的透视图。图124是图123的底座连接件的前视图。图125是穿过图124的线125-125的横截面视图。图126是图123的底座连接件的分解图。图127是示出了根据本技术的一个实例的空气输送管的底座连接件与中间部件的接合的顶视图,底座连接件处于锁定位置。图128是与图127相关的横截面视图,示出了处于锁定位置的底座连接件。图129是示出了根据本技术的一个实例的空气输送管的底座连接件与中间部件和设置于贮存器底座的接触组件的接合的侧视图,底座连接件处于锁定位置。图130是与图129相关的横截面视图,示出了处于锁定位置的底座连接件。图131是沿图79的线131-131截取的图79的集成的RPT装置和湿化器的加湿部分的横截面视图。图132是示出了图131的集成的RPT装置和湿化器的一部分的放大视图。图133是示出了图131的集成的RPT装置和湿化器的另一部分的放大视图。图134是图82的水贮存器的盖的倒置底部透视图。图135是沿图134的线135-135截取的图134的盖的倒置横截面视图。图136是沿图134的线136-136截取的图134的盖的倒置横截面视图。5具体实施方式在更进一步详细描述本技术之前,应当理解的是本技术并不限于本文所描述的特定实例,本文描述的特定实例可改变。还应当理解的是本公开内容中使用的术语仅是为了描述本文所描述的特定实例的目的,并不意图进行限制。提供与可共有一个或多个共同特点和/或特征的各种实例有关的以下描述。应该理解的是任何一个实例的一个或更多个特征可以与另一个实例或其他实例的一个或多个特征组合。另外,在实例的任一项中,任何单个特征或特征的组合可以组成另外的实例。5.1治疗在一种形式中,本技术包括用于治疗呼吸障碍的方法,该方法包括向患者1000的气道入口施加正压的步骤。在本技术的某些实例中,经由一个或两个鼻孔向患者的鼻道提供正压下的空气供给。在本技术的某些实例中,限定、限制或阻止口呼吸。5.2治疗系统在一种形式中,本技术包括用于治疗呼吸障碍的设备或装置。该设备或装置可以包括RPT装置4000,其用于经由空气回路4170至患者接口3000向患者1000供应加压空气,例如,参见图1A至1C。5.3患者接口图3A示出了根据本技术的一个方面的无创患者接口3000,其包括以下功能方面:密封形成结构3100、充气室3200、定位和稳定结构3300、通气口3400、用于连接到空气回路4170的一种形式的连接端口3600以及前额支架3700。在一些形式中,可通过一个或多个物理部件来提供功能方面。在一些形式中,一个实体部件可提供一个或多个功能方面。在使用时,密封形成结构3100被布置成围绕患者气道的入口,以便有利于将正压下的空气供应至气道。如果患者接口不能舒适地向气道输送最小水平的正压,则患者接口可能不适于呼吸压力治疗。根据本技术的一种形式的患者接口3000被构造和布置为能够以相对于环境至少6cmH2O的正压供应空气。根据本技术的一种形式的患者接口3000被构造和布置为能够以相对于环境至少10cmH2O的正压供应空气。根据本技术的一种形式的患者接口3000被构造和布置为能够以相对于环境至少20cmH2O的正压供应空气。5.4RPT装置图5A示出了根据本技术的一个方面的RPT装置4000的分解图。RPT装置4000可以包括机械、气动和/或电子部件,并且被配置为执行一种或多种算法。RPT装置4000可以被配置成产生用于输送至患者气道的空气流,例如用于治疗本文件中别处描述的一种或多种呼吸病症。在一种形式中,RPT装置4000被构造和布置成能够以-20L/min至+150L/min的范围输送空气流,同时保持至少6cmH2O、或至少10cmH2O、或至少20cmH2O的正压。RPT装置4000可包括具有一个或多个面板的外壳,例如主面板4010、前面板4012和侧面板4014。RPT装置4000还可包括具有消音器4124的出口罩,如图5A和5B所示。具有消音器4124的出口罩可以是能够移除的,并且可以替换为水贮存器5110(参见图5C)。在这种形式中,可以认为RPT装置4000包括集成的湿化器5000。因此,RPT装置4000可以在加湿或不加湿的情况下使用,这取决于是否分别附接了水贮存器5110或具有消音器4124的出口罩。优选地,RPT装置4000包括底盘4016,其对RPT装置4000的一个或多个内部部件进行支撑。在一种形式中,RPT装置4000包括压力发生器4140,其可以容纳与底盘4016联接的气动块4020中。在PCT公开第WO2015/089582号中描述了示例性RPT装置的其他实例和细节,该申请通过引用整体并入本文。RPT装置4000的气动路径(例如图5D中所示)可以包括入口空气过滤器4112、入口消音器4122、能够供应正压下的空气的压力发生器4140(优选鼓风机4142)以及出口消音器4124(或者如果需要加湿时,水贮存器5110)。在气动路径中可以包括一个或多个转换器4270,例如压力传感器和流量传感器。气动路径还可以包括防溢回阀4160,以防止水从湿化器5000溢回至RPT装置4000的电气部件。如图5E所示,RPT装置4000可以具有电源4210、一个或多个输入装置4220、中央控制器4230、治疗装置控制器4240、一个或多个保护电路4250、存储器4260、传感器/转换器4270、数据通信接口4280以及一个或多个输出装置4290。电气部件4200可以安装在单个印刷电路板组件(PCBA)4202上(例如,参见图5A)。在一种替代形式中,RPT装置4000可包括多于一个PCBA4202。5.4.1RPT装置的机械&气动部件RPT装置可在整体单元中包括一个或多个以下部件。在一种替代形式中,一个或多个以下部件可被设置为各自分离的单元。5.4.1.1空气过滤器根据本技术的一种形式的RPT装置可以包括空气过滤器4110,或多个空气过滤器4110。在一种形式中,入口空气过滤器4112被定位在压力发生器4140上游的气动路径的起点处。在一种形式中,出口空气过滤器4114,例如抗菌过滤器,被定位在气动块4020的出口与患者接口3000之间。5.4.1.2消音器根据本技术的一种形式的RPT装置可以包括消音器4120,或多个消音器4120。在本技术的一种形式中,入口消音器4122被定位在压力发生器4140上游的气动路径中。在本技术的一种形式中,出口消音器4124被定位在压力发生器4140与患者接口3000之间的气动路径中。5.4.1.3压力发生器在本技术的一种形式中,用于产生正压下的空气流或空气供给的压力发生器4140为可控鼓风机4142。例如,鼓风机4142可以包括具有一个或多个叶轮的无刷DC电动机4144。叶轮可以位于蜗壳中。鼓风机可以例如以高达约120升/分钟的速率,并以约4cmH2O至约20cmH2O范围内的正压或高达约30cmH2O的其他形式输送空气供给。鼓风机可如以下专利或专利申请中任何一个所述,这些专利或专利申请以引用的方式整体并入本文:美国专利第7,866,944号;美国专利第8,638,014号;美国专利第8,636,479号;和PCT专利申请第WO2013/020167号。压力发生器4140受治疗装置控制器4240的控制。在其他形式中,压力发生器4140可以是活塞驱动的泵、连接到高压源(例如,压缩空气贮存器)的压力调节器、或风箱。5.4.1.4转换器转换器可以在RPT装置内部,或RPT装置外部。外部转换器可以被定位于例如空气回路(例如,患者接口)上或形成空气回路(例如,患者接口)的一部分。外部转换器可以是非接触传感器的形式,诸如传送或传递数据至RPT装置的多普勒雷达运动传感器。在本技术的一种形式中,一个或多个转换器4270可以被定位在压力发生器4140的上游和/或下游。一个或多个转换器4270可以被构造和布置成生成表示空气流性质(例如气动路径中该点处的流量、压力或温度)的信号。在本技术的一种形式中,一个或多个转换器4270可以被定位在患者接口3000的近侧。在一种形式中,可以例如通过低通滤波、高通滤波或带通滤波对来自转换器4270的信号进行滤波。5.4.1.4.1流量传感器根据本技术的流量传感器4274可以基于压差转换器,例如来自SENSIRION的SDP600系列压差转换器。在一种形式中,来自流量传感器4274的表示流量的信号被中央控制器4230接收。5.4.1.4.2压力传感器根据本技术的压力传感器4272被定位成与气动路径流体连通。合适的压力传感器的实例是来自HONEYWELLASDX系列的转换器。可替代的合适的压力传感器是来自GENERALELECTRIC的NPA系列的转换器。在一种形式中,来自压力传感器4272的信号被中央控制器4230接收。5.4.1.4.3电动机转速转换器在本技术的一种形式中,电动机转速转换器4276用于确定电动机4144和/或鼓风机4142的转动速度。可将来自电动机转速转换器4276的电动机转速信号提供给治疗装置控制器4240。电动机转速转换器4276可以例如是速度传感器,例如霍尔效应传感器。5.4.1.5防溢回阀在本技术的一种形式中,防溢回阀4160被定位在湿化器5000与气动块4020之间。防溢回阀被构造和布置成降低水从湿化器5000向上游流动例如到电动机4144的风险。5.4.2RPT装置电气部件5.4.2.1电源电源4210可被定位在RPT装置4000的外部壳体4010的内部或外部。在本技术的一种形式中,电源4210仅向RPT装置4000提供电力。在本技术的另一种形式中,电源4210向RPT装置4000和湿化器5000两者提供电力。5.4.2.2输入装置在本技术的一种形式中,RPT装置4000包括形式为按钮、开关或拨盘的一个或多个输入装置4220,以允许人员与装置进行交互。按钮、开关或拨盘可以为经由触摸屏幕访问的物理装置或者软件装置。在一种形式中,按钮、开关或拨盘可以物理连接到外部壳体4010,或者在另一种形式中,可以与接收器无线通信,该接收器与中央控制器4230电连接。在一种形式中,输入装置4220可以被构造和布置成允许人员选择值和/或菜单选项。5.4.2.3中央控制器在本技术的一种形式中,中央控制器4230为一个或多个适于控制RPT装置4000的处理器。合适的处理器可包括x86因特尔处理器、基于来自ARMHoldings的处理器的处理器,诸如来自STMICROELECTRONIC的STM32系列微控制器。在本技术的某些替代性形式中,32位RISCCPU诸如来自STMICROELECTRONICS的STR9系列微控制器,或16位元RISCCPU诸如来自由TEXASINSTRUMENTS制造的MSP430系列微控制器的处理器可同样适用。在本技术的一种形式中,中央控制器4230为专用电子回路。在一种形式中,中央控制器4230为专用集成电路。在另一种形式中,中央控制器4230包括分立电子部件。中央控制器4230可被配置为接收来自一个或多个转换器4270、一个或多个输入装置4220以及湿化器5000的输入信号。中央控制器4230可被配置为向一个或多个输出装置4290、治疗装置控制器4240、数据通信接口4280和湿化器5000提供输出信号。在本技术的一些形式中,中央控制器4230被配置为实施本文所述的一种或多种方法,例如一种或多种表示为计算机程序的算法4300,这些计算机程序存储在非暂时性计算机可读存储介质例如存储器4260中。在本技术的一些形式中,中央控制器4230可与RPT装置4000集成。然而,在本技术的一些形式中,一些方法可通过位于远程的装置来执行。例如,位于远程的装置可通过对比例如来自本文所述的任何传感器的存储数据进行分析来确定呼吸机的控制设定值或检测呼吸相关事件。5.4.2.4时钟RPT装置4000可以包括连接到中央控制器4230的时钟4232。5.4.2.5治疗装置控制器在本技术的一种形式中,治疗装置控制器4240是治疗控制模块4330,其形成由中央控制器4230执行的算法4300的一部分。在本技术的一种形式中,治疗装置控制器4240为专用电动机控制集成电路。例如,在一种形式中,使用由ONSEMI制造的MC33035无刷DC电动机控制器。5.4.2.6保护电路根据本技术的一个或多个保护电路4250可包括电气保护电路、温度和/或压力安全电路。5.4.2.7存储器根据本技术的一种形式,RPT装置4000包括存储器4260,例如非易失性存储器。在一些形式中,存储器4260可包括电池供电的静态RAM。在一些形式中,存储器4260可包括易失性RAM。存储器4260可被定位于PCBA4202上。存储器4260可以是EEPROM或NAND闪存的形式。另外地或可替代地,RPT装置4000包括可移除形式的存储器4260,例如根据安全数字(SD)标准制成的存储卡。在本技术的一种形式中,存储器4260用作非暂时性计算机可读存储介质,其上存储表示本文所述的一种或多种方法的计算机程序指令,例如一个或多个算法4300。5.4.2.8数据通信系统在本技术的一种形式中,提供了数据通信接口4280,并且其连接到中央控制器4230。数据通信接口4280可以能够连接到远程外部通信网络4282和/或本地外部通信网络4284。远程外部通信网络4282可以能够连接到远程外部装置4286。本地外部通信网络4284可以能够连接到本地外部装置4288。在一种形式中,数据通信接口4280为中央控制器4230的一部分。在另一种形式中,数据通信接口4280与中央控制器4230分离,并且可以包括集成电路或处理器。在一种形式中,远程外部通信网络4282是因特网。数据通信接口4280可使用有线通信(例如,经由以太网或光纤)或无线协议(例如,CDMA、GSM、LTE)连接到因特网。在一种形式中,本地外部通信网络4284利用一个或多个通信标准,例如蓝牙或消费者红外协议。在一种形式中,远程外部装置4286是一台或多台计算机,例如网络计算机的群集。在一种形式中,远程外部装置4286可以为虚拟计算机,而非物理计算机。在任一情况下,这样的远程外部装置4286可以由适当授权人员(比如临床医生)进行访问。本地外部装置4288可以为个人计算机、移动电话、平板或远程控制装置。5.4.2.9包括任选的显示器、警报器的输出装置根据本技术的输出装置4290可以采取视觉、音频和触觉单元中的一种或多种的形式。视觉显示器可以是液晶显示器(LCD)或者发光二极管(LED)显示器。5.4.2.9.1显示器驱动器显示器驱动器4292接收作为输入的字符、符号或图像用于显示在显示器上4294,并将它们转换成使显示器4294显示那些字符、符号或图像的命令。5.4.2.9.2显示器显示器4294被配置为响应于从显示器驱动器4292接收的命令而可视地显示字符、符号或图像。例如,显示器4294可以为八段显示器,在这种情况下,显示器驱动器4292将每个字符或者符号(例如数字“0”)转换成八个逻辑信号,这些逻辑信号指示这八个相应的节段是否将被激活以显示特定的字符或符号。5.4.3RPT装置算法如上所述,在本技术的一些形式中,中央控制器4230可以被配置为实施一种或多种表示为计算机程序的算法4300,这些计算机程序存储在非暂时性计算机可读存储介质例如存储器4260中。算法4300被大致分组成称为模块的组,例如参见图5F。5.4.3.1预处理模块根据本技术的一种形式的预处理模块4310接收来自转换器4270(例如流量传感器4274或压力传感器4272)的信号作为输入,并执行一个或多个处理步骤以计算将被用作另一个模块(例如治疗引擎模块4320)的输入的一个或多个输出值。在本技术的一种形式中,输出值包括接口或面罩压力Pm、呼吸流量Qr和泄漏流量Ql。在本技术的各种形式中,预处理模块4310包括以下算法中的一个或多个:压力补偿4312、通气流量估计4314、泄漏流量估计4316和呼吸流量估计4318。5.4.3.1.1压力补偿在本技术的一种形式中,压力补偿算法4312接收指示在气动块出口近侧的气动路径中压力的信号作为输入。压力补偿算法4312估计通过空气回路4170的压降,并提供患者接口3000中估计的压力Pm作为输出。5.4.3.1.2通气流量估计在本技术的一种形式中,通气流量估计算法4314接收患者接口3000中估计的压力Pm作为输入,并估计来自患者接口3000中通气口3400的空气通气流量Qv。5.4.3.1.3泄漏流量估计在本技术的一种形式中,泄漏流量估计算法4316接收总流量Qt和通气流量Qv作为输入,并提供泄漏流量Ql的估计作为输出。在一种形式中,泄漏流量估计算法通过计算在足够长以包括若干呼吸周期的时间段(例如约10秒)内的总流量Qt与通气流量Qv之差的平均值来估计泄漏流量Ql。在一种形式中,泄漏流量估计算法4316接收患者接口3000中的总流量Qt、通气流量Qv和估计压力Pm作为输入,并通过计算泄漏传导率并将泄漏流量Ql确定为泄漏传导率和压力Pm的函数来提供泄漏流量Ql作为输出。泄漏传导率被计算为低通滤波的非通气流量(等于总流量Qt和通气流量Qv之差)与低通滤波的压力Pm的平方根的商,其中低通滤波器时间常数具有足够长的值以包括几个呼吸循环,例如大约10秒。泄漏流量Ql可被估计为泄漏传导率和压力Pm的函数的乘积。5.4.3.1.4呼吸流量估计在本技术的一种形式中,呼吸流量估计算法4318接收总流量Qt、通气流量Qv和泄漏流量Ql作为输入,并通过从总流量Qt中减去通气流量Qv和泄漏流量Ql来估计流向患者的空气的呼吸流量Qr。5.4.3.2治疗引擎模块在本技术的一种形式中,治疗引擎模块4320接收患者接口3000中的压力Pm和至患者的空气呼吸流量Qr中的一个或多个作为输入,并且提供一个或多个治疗参数作为输出。在本技术的一种形式中,治疗参数是治疗压力Pt。在本技术的一种形式中,治疗参数是压力变化、基础压力和目标通气量中的一者或多者。在各种形式中,治疗引擎模块4320包括以下算法中的一个或多个:相位确定4321、波形确定4322、通气量确定4323、吸气流量限制确定4324、呼吸暂停/呼吸不足确定4325、打鼾确定4326、气道开放性确定4327、目标通气量确定4328和治疗参数确定4329。5.4.3.2.1相位确定在本技术的一种形式中,RPT装置4000不确定相位。在本技术的一种形式中,相位确定算法4321接收指示呼吸流量Qr的信号作为输入,并提供患者1000的当前呼吸周期的相位Φ作为输出。在被称为离散相位确定的一些形式中,相位输出Φ是离散变量。离散相位确定的一种实现方式是,当分别检测到自发吸气和呼气的开始时,提供具有吸气值或呼气值的双值相位输出Φ,例如分别表示为0和0.5转的值。进行“触发”和“循环”的RPT装置4000有效地执行离散相位确定,因为触发和循环点分别是从呼气到吸气以及从吸气到呼气的相位变化的时刻。在双值相位确定的一种实现方式中,当呼吸流量Qr的值超过正阈值时,相位输出Φ被确定为具有离散值0(由此“触发”RPT装置4000),并且当呼吸流量Qr的值比负阈值更负时,相位输出Φ被确定为具有离散值0.5转(从而使RPT装置4000“循环”)。吸气时间Ti和呼气时间Te可以被估计为在许多呼吸周期内在相位Φ分别等于0(指示吸气)和0.5(指示呼气)时所花费时间的典型值。离散相位确定的另一种实现方式提供三值相位输出Φ,其值为吸气、吸气中期停顿和呼气之一。在称为连续相位确定的其他形式中,相位输出Φ是连续变量,例如从0至1转或0至2π弧度变化。执行连续相位确定的RPT装置4000可以分别在连续相位达到0和0.5转时触发和循环。在连续相位确定的一种实现方式中,使用呼吸流量Qr的模糊逻辑分析来确定连续相位值Φ。在该实现方式中确定的相位的连续值通常被称为“模糊相位”。在模糊相位确定算法4321的一种实现方式中,将以下规则应用于呼吸流量Qr:1.如果呼吸流量为零并且快速增加,则相位为0转。2.如果呼吸流量大量为正并且稳定,则相位为0.25转。3.如果呼吸流量为零并且快速下降,则相位为0.5转。4.如果呼吸流量大量为负并且稳定,则相位为0.75转。5.如果呼吸流量为零且稳定并且呼吸流量的5秒低通滤波绝对值大,则相位为0.9转。6.如果呼吸流量为正并且为呼气阶段,则相位为0转。7.如果呼吸流量为负并且为吸气阶段,则相位为0.5转。8.如果呼吸流量的5秒低通滤波绝对值大,相位以等于患者呼吸速率的稳定速率增加,低通滤波具有20秒的时间常数。每个规则的输出可以表示为矢量,其相位是规则的结果并且其幅度是规则为真的模糊程度。呼吸流量“大”、“稳定”等的模糊程度用适当的隶属函数确定。然后,表示为矢量的规则的结果通过某些函数进行组合,例如采取质心。在这样的组合中,规则可被等同地加权,或者不同地加权。在连续相位确定的另一种实现方式中,如上所述,首先从呼吸流量Qr离散地估计相位Φ,吸气时间Ti和呼气时间Te也是如此。可以将任何时刻的连续相位Φ确定为从前一触发时刻起已经经过的吸气时间Ti的比例的一半,或者0.5转加上从前一循环时刻起已经经过的呼气时间Te的比例的一半(更近的那个时刻)。5.4.3.2.2波形确定在本技术的一个形式中,治疗参数确定算法4329在患者的整个呼吸周期中提供近似恒定的治疗压力。在本技术的其他形式中,治疗控制模块4330控制压力发生器4140提供治疗压力Pt,治疗压力Pt根据波形模板Π(Φ)作为患者的呼吸周期的相位Φ的函数而变化。在本技术的一种形式中,波形确定算法4322在相位确定算法4321提供的相位值Φ的域上提供值在[0,1]范围内的波形模板Π(Φ)以供治疗参数确定算法4329使用。在一种形式中,适合于离散或连续值相位,波形模板Π(Φ)是方波模板,对于高达并包括0.5转的相位值具有值1,并且对于高于0.5转的相位值具有值0。在一种形式中,适用于连续值相位,波形模板Π(Φ)包括两个平滑弯曲部分,即对于高达0.5转的相位值,平滑弯曲(例如升余弦)从0上升到1,而对于高于0.5转的相位值,平滑弯曲(例如指数)从1下降到0。在一种形式中,适用于连续值相位,波形模板Π(Φ)是基于方波的,但是对于最多至小于0.5转的“上升时间”的相位值具有从0到1的平滑上升,并且对于0.5转之后的“下落时间”内的相位值具有从1到0的平滑下降,“下降时间”小于0.5转。在本技术的一些形式中,波形确定算法4322根据RPT装置的设置,从波形模板库中选择波形模板Π(Φ)。库中的每个波形模板Π(Φ)可以被提供为针对相位值Φ的值查找表Π。在其他形式中,波形确定算法4322使用可能由一个或多个参数(例如,指数曲线部分的时间常数)参数化的预定函数形式来计算“运行中”的波形模板Π(Φ)。函数形式的参数可以是预定的或取决于患者1000的当前状态。在本技术的一些形式中,适用于吸气(Φ=0转)或呼气(Φ=0.5转)的离散双值相位,波形测定算法4322计算作为离散相位Φ和自最近触发时刻起测量的时间t的函数的“运行中”波形模板Π。在一种这样的形式中,波形确定算法4322如下计算两部分(吸气和呼气)的波形模板Π(Φ,t):其中Πi(t)和Πe(t)是波形模板Π(Φ,t)的吸气部分和呼气部分。在一种这样的形式中,波形模板的吸气部分Πi(t)是由上升时间参数化的从0到1的平滑上升,波形模板的呼气部分Πe(t)是由下降时间参数化的从1到0的平滑下落。5.4.3.2.3通气量确定在本技术的一种形式中,通气量确定算法4323接收呼吸流量Qr作为输入,并且确定指示当前患者通气量Vent的测量值。在一些实现方式中,通气量确定算法4323确定通气量Vent的测量值,其是实际患者通气量的估计值。一种这样的实现方式是取呼吸流量Qr的绝对值的一半,其任选地由低通滤波器(例如角频率为0.11Hz的二阶贝塞尔低通滤波器)滤波。在其他实现方式中,通气量确定算法4323确定通气量Vent的测量值,其与实际患者通气量大致成比例。一种这样的实现方式估计在周期的吸气部分上的峰值呼吸流量Q峰值。如果流量波形形状变化不大(这里,当在时间和幅度上归一化的两次呼吸的流量波形相似时,认为两次呼吸的形状相似),则该过程和涉及对呼吸流量Qr进行采样的许多其他过程产生与通气量大致成比例的测量值。一些简单的实例包括中值为正的呼吸流量、呼吸流量绝对值的中值和流量的标准偏差。使用正系数的,甚至一些同时使用正负系数的呼吸流量绝对值的任意顺序统计量的任意线性组合与通气量大致成比例。另一实例是在吸气部分的中间K比例(按时间)中的呼吸流量的平均值,其中0<K<1。如果流量形状保持恒定,则可存在任意数量与通气量精确地成比例的测量值。5.4.3.2.4吸气流量限制确定在本技术的一种形式中,中央控制器4230执行用于确定吸气流量限制程度的吸气流量限制确定算法4324。在一种形式中,吸气流量限制确定算法4324接收呼吸流量信号Qr作为输入,并且提供呼吸的吸气部分表现出吸气流量限制程度的度量作为输出。在本技术的一种形式中,每次呼吸的吸气部分通过零交点检测器识别。通过内插器沿着每次呼吸的吸气流量-时间曲线内插表示时间点的多个均匀间隔的点(例如,六十五个)。然后,由点描述的曲线由标量缩放以具有单位长度(持续时间/时间段)和单位面积,以去除改变呼吸速率和深度的影响。然后,在比较器中对缩放的呼吸与表示正常无阻呼吸的预存模板(类似于图6A所示的呼吸的吸气部分)进行比较。剔除在此模板的吸气期间的任何时间处偏离超过指定阈值(通常为1个缩放单位)的呼吸(由测试元件确定),比如由咳嗽、叹气、吞咽和打鼾引起的那些。对于未被剔除的数据,由中央控制器4230针对前面的若干吸气事件计算第一个这样的缩放点的移动平均值。对于第二个这样的点,在相同的吸气事件上重复该操作,等等。因此,例如,由中央控制器4230产生六十五个缩放数据点,并且该六十五个缩放数据点表示前面的若干吸气事件(例如,三个事件)的移动平均值。这些(例如,六十五个)点的连续更新值的移动平均值在下文中被称为“缩放流量”,其被指定为Qs(t)。可替代地,可以使用单个吸气事件而不是移动平均值。根据缩放流量,可以计算与确定部分阻塞相关的两个形状因子。形状因子1是中间(例如三十二)缩放流量点的平均值与平均总体(例如六十五)缩放流量点的比率。如果这个比率超过1,则呼吸将被视为正常。如果比率是1或更小,则呼吸将被视为是阻塞的。约1.17的比率被认为是部分阻塞与无阻塞呼吸之间的阈值,并且等于允许在典型患者维持充分氧合的阻塞程度。形状因子2被计算为在中间(例如三十二)点上获取的与单位缩放流量的RMS偏差。约0.2个单位的RMS偏差被认为是正常的。零RMS偏差被认为是完全限流的呼吸。RMS偏差越接近零,呼吸将被视为流更受限制。形状因子1和2可以用作替代方案或组合使用。在本技术的其他形式中,采样点数、呼吸次数和中间点数可以不同于上述那些。此外,阈值可以不同于所描述的那些。5.4.3.2.5呼吸暂停和呼吸不足确定在本技术的一种形式中,中央控制器4230执行用于确定存在呼吸暂停和/或呼吸不足的呼吸暂停/呼吸不足确定算法4325。在一种形式中,呼吸暂停/呼吸不足确定算法4325接收呼吸流量信号Qr作为输入,并提供指示已经检测到呼吸暂停或呼吸不足的标记作为输出。在一种形式中,当呼吸流量Qr的函数在预定时间段内降到低于流量阈值时,将可视为检测到呼吸暂停。该函数可以确定峰值流量、相对短期的平均流量或相对短期的平均流量和峰值流量的中间流量,例如RMS流量。流量阈值可以是流量的相对长期的量度。在一种形式中,当呼吸流量Qr的函数在预定时间段内降到低于第二流量阈值时,将可视为检测到呼吸不足。该函数可以确定峰值流量、相对短期平均流量或相对短期的平均流量与峰值流量之间的流量,例如RMS流量。第二流量阈值可以是流量的相对长期的量度。第二流量阈值大于用于检测呼吸暂停的流量阈值。5.4.3.2.6打鼾确定在本技术的一种形式中,中央控制器4230执行用于确定打鼾程度的一种或多种打鼾确定算法4326。在一种形式中,打鼾确定算法4326接收呼吸流量信号Qr作为输入,并且提供打鼾存在程度的度量作为输出。打鼾确定算法4326可以包括确定30-300Hz范围内的流量信号强度的步骤。此外,打鼾确定算法4326可以包括过滤呼吸流量信号Qr以减少背景噪声(例如,来自鼓风机的系统中的气流的声音)的步骤。5.4.3.2.7气道开放性确定在本技术的一种形式中,中央控制器4230执行用于确定气道开放性的一种或多种气道开放性确定算法4327。在一种形式中,气道开放性确定算法4327接收呼吸流量信号Qr作为输入,并且确定信号在约0.75Hz和约3Hz的频率范围内的功率。在这个频率范围内出现峰值被认为是指示气道开放。没有峰值被认为是气道闭合的指示。在一种形式中,寻找峰值的频率范围是治疗压力Pt中的小的受迫振荡的频率。在一种实现方式中,受迫振荡的频率为2Hz,幅度大约为1cmH2O。在一种形式中,气道开放性确定算法4327接收呼吸流量信号Qr作为输入,并且确定心原性信号的存在或不存在。不存在心源性信号被认为是气道闭合的指示。5.4.3.2.8目标通气量确定在本技术的一种形式中,中央控制器4230将当前通气量的量度Vent作为输入,并且执行用于确定通气量的量度的目标值Vtgt的一个或多个目标通气量确定算法4328。在本技术的一些形式中,没有目标通气量确定算法4328,并且目标值Vtgt被预先确定,例如通过在配置RPT装置4000期间进行硬编码或者通过输入装置4220进行手动输入。在本技术的其他形式,例如自适应伺服通气(ASV)中,目标通气量确定算法4328根据指示患者的典型近期通气量的值Vtyp计算目标值Vtgt。在一些形式的自适应伺服通气中,目标通气量Vtgt被计算为典型近期通气量Vtyp的高比例但比其小。此类形式中的高比例可能在(80%,100%)、或(85%,95%)、或(87%,92%)的范围内。在自适应伺服通气的其他形式中,目标通气量Vtgt被计算为略大于典型近期通气量Vtyp的1倍。典型近期通气量Vtyp是这样的值,在该值周围,当前通气量的量度Vent在某个预定时间标度上在多个时刻上的分布趋于聚集,即,当前通气量的量度在最近历史上的集中趋势的量度。在目标通气量确定算法4328的一种实现方式中,最近历史的量级是数分钟,但是在任何情况下都应该长于潮式盛衰周期的时间标度。目标通气量确定算法4328可以使用各种公知的中心趋势量度中的任一种,以根据当前通气量的量度Vent来确定典型近期通气量Vtyp。一种这样的量度是低通滤波器在当前通气量的量度Vent上的输出,其中时间常数等于一百秒。5.4.3.2.9治疗参数确定在本技术的一些形式中,中央控制器4230执行一个或多个治疗参数确定算法4329,以使用治疗引擎模块4320中的一个或多个其他算法返回的值来确定一个或多个治疗参数。在本技术的一种形式中,治疗参数是瞬时治疗压力Pt。在该形式的一种实现方式中,治疗参数确定算法4329使用以下等式来确定治疗压力PtPt=AΠ(Φ,t)+P0(1)其中:A是幅值,Π(Φ,t)是在相位的当前值Φ和时间t处的波形模板值(在0至1的范围内),并且P0是基础压力。如果波形确定算法4322提供波形模板Π(Φ,t)作为由相位Φ索引的值查找表Π,则治疗参数确定算法4329通过将最近的查找表条目定位到由相位确定算法4321返回的相位的当前值Φ,或者通过在跨越相位的当前值Φ的两个条目之间进行插值来应用等式(1)。幅度A和基础压力P0的值可以由治疗参数确定算法4329通过以下描述的方式根据所选择的呼吸压力治疗模式来设置。5.4.3.3治疗控制模块根据本技术的一个方面的治疗控制模块4330从治疗引擎模块4320的治疗参数确定算法4329接收治疗参数作为输入,并且控制压力发生器4140以按照治疗参数输送空气流。在本技术的一种形式中,治疗参数是治疗压力Pt,并且治疗控制模块4330控制压力发生器4140以递送空气流,该空气流在患者接口3000处的面罩压力Pm等于治疗压力Pt。5.4.3.4故障状况检测在本技术的一种形式中,中央控制器4230执行用于检测故障状况的一种或多种方法4340。通过一种或多种方法4340检测的故障状况可以包括以下中的至少一者:·电源故障(无电源或电源不足)·转换器故障检测·无法检测到部件的存在·操作参数处于推荐范围之外(例如压力、流量、温度、PaO2)·测试警报器无法产生可检测的警报信号。在检测到故障状况时,对应的算法4340通过以下中的一者或多者用信号通知存在故障:·启动可听、可视和/或动力学(例如振动)警报·向外部装置发送消息·记录事件的日志5.5空气回路根据本技术一个方面的空气回路4170为导管或管子,其被构造和布置成在使用中允许空气流在两个部件例如RPT装置4000与患者接口3000之间行进。特别地,空气回路4170可以与气动块4020和患者接口的出口流体连接。空气回路可以称为空气输送管。在某些情况下,回路可以具有独立的分支用于吸气和呼气。在其他情况下,使用单个分支。在一些形式中,空气回路4170可包括一个或多个加热元件,加热元件被配置为加热空气回路中的空气,例如以维持或升高空气的温度。加热元件可以是加热丝回路的形式,并且可包括一个或多个转换器,例如温度传感器。在一种形式中,可绕空气回路4170的轴线螺旋缠绕加热丝回路。加热元件可与诸如中央控制器4230的控制器相连通。在美国专利申请第8,733,349号中描述了包括加热丝回路的空气回路4170的一个实例,该申请通过引用整体并入本文。5.5.1氧气输送在本技术的一种形式中,补充氧4180被输送至气动路径中的一个或多个点(例如气动块4020的上游)处、空气回路4170和/或患者接口3000。5.6湿化器5.6.1湿化器概述在本技术的一种形式中,提供了湿化器5000(例如,如图5C所示),以相对于环境空气改变用于输送至患者的空气或气体的绝对湿度。通常,湿化器5000用于在输送至患者的气道之前增加空气流的绝对湿度并增加空气流的温度(相对于环境空气)。RPT装置和湿化器图6A、6B、7和8A至8D示出了根据本技术的一个实例的集成的RPT装置和湿化器6000。如图所示,集成的RPT装置和湿化器6000包括被构造和布置成接纳水贮存器6100(也称为湿化器贮存桶或湿化器水贮存器)的贮存器底座6050。在示出的实例中,集成的RPT装置和湿化器6000包括与RPT装置集成的湿化器,使得RPT装置的气动块7100包括执行RPT装置的功能的部件以及执行湿化器的功能的部件。例如,如图7所示,贮存器底座6050与RPT装置的气动块7100集成以提供整体单元,贮存器底座6050被构造和布置成接纳水贮存器6100。应当理解的是,湿化器(例如,贮存器底座6050)可以以替代的布置单独地设置于RPT装置(例如,气动块7100)。在这样的布置中,可以使用附加的接口来将湿化器(例如,贮存器底座6050)连接到RPT装置(例如,气动块7100)。RPT装置包括被支撑在气动块7100内的鼓风机。鼓风机被构造和布置成用于产生例如在2-50cmH2O范围内的正压下的空气流或供给。在一个实例中,鼓风机可以包括单级设计或多级设计,例如两级或更多级设计。鼓风机能够操作以例如通过气动块中的一个或多个进气开口将空气供给抽吸到气动块7100中并进入其入口(鼓风机入口),并且在出口(鼓风机出口)处提供加压的空气供给。在PCT专利申请公开第WO2013/020167号中描述了示例性鼓风机的实例和细节,该申请通过引用整体并入本文。鼓风机出口与湿化器连通,例如水贮存器6100的入口。气动块7100包括底盘组件7300,例如包括顶部底盘和底部底盘。底盘组件7300包括底盘入口7310(例如,参见图20E)和底盘出口7320(例如,参见图20F和21)。在一个实例中,包括一个或多个面板和/或一个或多个用户输入/显示器的外部壳体8002可以包封气动块7100,例如参见图6A和6B。底盘组件7300支撑和/或容纳气动块7100的内部部件,例如鼓风机。底盘组件7300还支撑印刷电路板组件(PCBA)7600。底盘组件7300和气动块的内部部件配合以形成从底盘入口7310延伸到鼓风机的鼓风机入口并从鼓风机的鼓风机出口延伸到底盘出口7320的气动气流路径。底盘出口7320适于在水贮存器被接纳在贮存器底座6050中时与贮存器底座6050和水贮存器6100的入口连通。贮存器底座6050还被配置和布置成允许水贮存器6100的出口与空气回路4170之间连通,如以下更详细地描述的。虽然所描述的实例大部分是基于空气回路或空气输送管能够附接至水贮存器底座的描述,但是应当理解,在一些空气输送系统中,系统中没有加湿和水贮存器。在这种情况下,空气输送管可以直接或间接地连接至RPT装置的管接合座。在这种情况下,与水贮存器连接座相关的所有上述公开内容也适用于RPT装置的相应管的接合。而且,RPT装置和/或湿化器提供一种形式的连接或接合端口,用于连接到空气回路或空气输送管4170,即,空气输送管4170与RPT装置和/或湿化器的接合之处。在以下描述的实例中,连接或接合端口可以包括例如水贮存器6100的出口管6130(出口)、出口消音器4124的出口、中间部件6700或中间部件9700。连接或接合端口的功能是将在RPT装置中产生的加压空气传递到空气输送管和患者接口,因此可以与具有或不具有湿化器的RPT装置一起使用。在实例中,连接或接合端口还可以定位、固定和/或电连接到空气输送管。此外,应当理解,连接或接合端口可以位于RPT装置和/或湿化器上的任何地方,只要其与RPT装置和/或湿化器的加压流源(例如,水贮存器)连通(例如,经由一个或多个中间连接件)。例如,连接或接合端口可以形成水贮存器底座的一部分,或者可以被定位在其他地方(即,不是水贮存器底座的一部分)并与水贮存器底座、其水贮存器或RPT装置的气动块连通。5.6.2湿化器部件5.6.2.1水贮存器图6B至9示出了根据本技术的一个实例的水贮存器6100。水贮存器6100被配置为保持或保留液体(例如,水)容量以被蒸发用于加湿空气流。水贮存器6100可被配置为保持预定最大水容量以便提供充分加湿持续至少呼吸疗程的持续期间,例如睡眠的一个晚上。通常,水贮存器被配置为容纳几百毫升的水,例如300毫升(ml)、325ml、350ml或400ml,但是应当理解,也可以使用其他体积的液体,例如至少100ml。在其他形式中,湿化器可以被配置为接收来自外部水源例如建筑的供水系统的水供给。在所示的实例中,水贮存器6100包括贮存器基部6112(也称为贮存器本体、湿化器贮存桶基部或湿化器贮存桶本体)和以能够移除的方式联接到贮存器基部6112的贮存器盖6114(也称为湿化器贮存桶盖)。可以为贮存器盖和/或贮存器基部设置可变形密封,例如参见在图19C中设置于贮存器盖6114的周边的可变形周边密封6116。当贮存器盖6114联接到贮存器基部6112上时,密封6116被构造和布置成接合在盖6114和基部6112之间,以密封盖和基部并防止水从水贮存器流出。贮存器盖6114可以被构造成能够从贮存器基部6112完全移除,例如,为了患者的可用性以清洁贮存器基部和/或贮存器盖的内部。在一个替代性实例中,贮存器盖6114可以永久地附接到贮存器基部6112上。根据一个方面,水贮存器6100被配置为当空气流行进通过其中时为来自RPT装置的空气流增加湿度。在一种形式中,水贮存器6100可以配置为促使空气流在弯曲路径中行进穿过贮存器,同时与其中的水容量接触。例如,水贮存器6100可以包括一个或多个流动元件,例如挡板,以促进曲折的流动路径。如下面更详细地描述的,水贮存器6100可以能够移除的方式与贮存器底座6050联接。在一个实例中,可以沿着在前-后方向上延伸的路径插入/移除水贮存器。在一个替代性实例中,用于插入/移除水贮存器的路径的至少一部分可以在下-上方向上延伸,例如,用于插入的路径的至少一部分包括进入操作位置的斜坡或下降。水贮存器6100还可被配置为例如当该贮存器从其正常工作方向移位和/或转动时,阻止液体例如通过任一孔和/或在其子部件中间从其流出。由于待由湿化器加湿的空气流通常被加压,所以贮存器还可被配置为避免通过泄露和/或流动阻抗导致气动压力的损失。贮存器基部如图9所示,贮存器基部6112包括主体6140和传导性部分6150,主体6140包括多个壁,传导性部分6150通常设置于底部的壁上以形成容纳一定体积的水的腔室或空腔。贮存器基部6112被构造和布置成与贮存器盖6114接合或对接。在如图19C所示的实例中,贮存器基部6112的周边提供被布置成与设置于贮存器盖6114的密封6116接合或对接的表面,例如以防止水从水贮存器中流出。贮存器基部6112可以被构造和布置成将贮存器盖6114保持在贮存器基部6112上,例如,铰链布置和/或卡扣配合锁定突片,以将贮存器盖以能够释放的方式保持在贮存器基部上。传导性部分传导性部分6150被配置为允许热量从加热元件(例如,图6B中所示的贮存器底座6050的加热板6080)有效传递到贮存器中的一定体积的液体。在一种形式中,传导性部分可以被布置为板,但是其他形状也可同样适用。传导性部分的全部或一部分可由导热材料制成,例如铝(例如,厚度为大约2mm,例如1mm、1.5mm、2.5mm或3mm)、另一种导热金属或一些塑料。在某些情况下,可用传导性较低的适当几何结构的材料来实现适当的热传导性。包括金属板和/或薄膜的传导性部分在一个实例中,传导性部分6150可以包括金属板、非金属薄膜(也称为膜板或膜基底),或金属板和非金属薄膜的组合的分层布置。如下所述,传导性部分6150被配置为与贮存器底座6050的加热板6080热联接,以允许热量从加热板6080热传递到水贮存器6100中的一定体积的液体。图10A至10G示出了根据本技术的一个实例的包括金属板作为传导性部分6150M的贮存器基部6112M1。在一个实例中,贮存器基部6112M1包括两部分式构造,即,仅一个主体6140和金属传导性部分6150M。如图所示,主体6140包括多个壁,并且金属传导性部分6150M设置于底部的壁上以形成容纳一定体积的水的腔室。例如,主体6140包括围绕主体6140的周边延伸的侧壁6142和连接侧壁6142的底壁6144。金属传导性部分6150M被设置或以其他方式结合到底壁6144中以形成用于容纳水的腔室。在一个实例中,金属热传导性部分6150M被提供为与主体6140分离且不同的结构,然后被固定或以其他方式设置于底壁6144上的操作位置,例如,金属热传导性部分6150M包括固定到底壁6144的预成形结构。在一个实例中,金属传导性部分6150M包括金属材料,例如金属板,主体6140包括塑料或热塑性聚合物材料,例如PC、ABS、共聚酯。在一个实例中,传导性部分6150M通常可以具有约0.25-0.50mm,例如0.40mm的均匀壁厚。对于金属传导性部分,壁厚甚至可以更大,例如高达1.5mm。如果使用薄膜来代替(参见下面关于图13A至13C的描述),则可以使用更小的厚度,例如0.1-0.5mm。在一个实例中,金属传导性部分6150M可以预成形,然后嵌入成型到塑料主体6140中。例如,金属传导性部分首先通过一个或多个金属成形工艺形成其工作构造。然后,在熔融注塑之前将金属传导性部分或插入物插入主体的注塑模具中。在注塑过程中,熔体围绕金属传导性部分的边缘流动,并在熔体凝固时将金属传导性部分锁定或连接到主体。如图10G所示,金属传导性部分6150M可以包括底壁或板6152M、围绕板6152M的周边延伸的侧壁6154M,以及与底壁6144接合以将金属传导性部分6150M固定到塑料主体6140的接口部分6156M。在替代性布置中,金属传导性部分6150M可以延伸到主体6140的周边侧壁6142,从而代替底壁6144。在这种情况下,接口部分6156M可以接合主体6140的侧壁6142。如图10G所示,板6152M包括适于形成贮存器的底部内表面的第一侧6152.1M,第一侧的表面暴露于水。板6152M的第二侧6152.2M与第一侧相对,并适于形成贮存器的底部外表面,其表面暴露于加热板。因此,板的第二侧6152.2M提供被构造和布置成与加热板6080直接接合的接触表面。在一个实例中,板6152M可以包括预成形的完全或圆顶形状,即,第二侧6152.2M提供大致凸形的表面。当水贮存器6100被插入贮存器底座6050中时,可以在水贮存器与加热板之间提供偏置,使得弯曲板6152M将变平,例如变成基本上平坦的,以便使其自身与加热板6080的平坦表面对齐或适形。弯曲板6152M变平使得板6152M与加热板6080之间产生偏压,以确保良好的热接触并改善加热板与水贮存器内的水之间的热传递。在一个实例中,板的弯曲可以通过将金属传导性部分放置到主体的底壁中的较小开口中来形成,例如底壁中的较小开口压缩金属传导性部分以在板中形成弯曲。在一个替代性实例中,板6152M可包括大致平面形状,即预成形的平面形状。在所示出的实例中,金属传导性部分6150M被配置成使得板6152M的平面是偏移的并且大致平行于主体6140的底壁6144的平面,即,当水贮存器处于竖直操作取向时,该板在底壁下方。在一个替代性实例中,金属板6152M可以被配置成使得该板大致与底壁6144共面,即从而实现贮存器基部具有基本上平坦的底表面。在另一实例中,金属板6152M可以被配置成在多于一个的平面中延伸,例如,金属板可以提供如图29所示的台阶式布置。在一个实例中,金属传导性部分6150M可以包括表面处理,例如,等离子体表面处理。例如,金属传导性部分的内侧和/或外侧,例如至少在其接口部分6156M上,可以包括金属表面上的纳米等离子体颗粒。在所示出的实例中,贮存器基部6112M1的板6152M包括矩形形状,例如对应于贮存器底座6050内的加热板6080的形状。然而,应当理解,板6152M可以包括其他合适的形状,其可对应于或可不对应于加热板的形状,例如圆形、正方形、椭圆形。例如,图11A至11C示出了贮存器基部6112M2,其中金属传导性部分6150M的金属板6152M是圆形的。在替代性实例中,围绕板和/或接口部分的周边延伸的侧壁可以更长,以提供拉伸更深的金属传导性部分,例如参见图12A至12C,示出了具有拉伸更深的矩形形状的金属传导性部分6150M的贮存器基部6112M3。图13A至13C示出了根据本技术的一个实例的包括非金属薄膜作为传导性部分6150F的贮存器基部6112F1。在一个实例中,贮存器基部6112F1包括两部分式构造,即,仅一个主体6140和薄膜传导性部分6150F。薄膜传导性部分6150F可以包括热传导性非金属材料,例如硅酮、聚碳酸酯或其他热塑性或弹性体材料,例如共聚酯。在一个实例中,薄膜传导性部分6150F可以包括约0.05mm至0.5mm,例如0.10mm至0.125mm的厚度。在极少数情况下,可能需要较厚的膜,即高达1.5mm。在一个实例中,薄膜传导性部分6150F可以包括等于或小于约1mm,例如0.5mm,小于约0.5mm,例如0.40mm、0.375mm、0.25mm、0.175mm、0.125mm的厚度。如图13A至13C所示,贮存器基部6112F1的主体6140包括底壁6144和围绕底壁6144的周边延伸的侧壁6142。在这样的实例中,薄膜传导性部分6150F可以延伸跨过设置于底壁6144的孔,并且薄膜传导性部分6150F被设置为不仅跨过该孔,而且覆盖剩余底壁6144的至少一部分,以增强它们之间的密封并确保贮存器基部不漏水。因此,薄膜传导性部分6150F形成水贮存器基部的底部的至少一部分,以形成容纳和防止水从水贮存器流出的腔室。此外,例如,为了更好的密封,薄膜传导性部分6150F不仅可以与底壁6144中的开口重叠,而且可以延伸以覆盖贮存器基部的侧壁6142的至少一部分。在一个实例中,薄膜传导性部分6150F被提供为与主体6140分离且不同的结构,然后被固定或以其他方式设置于主体上的操作位置,例如,薄膜包括固定到主体的预成形结构。在一个实例中,主体6140包括塑料或热塑性聚合物材料,例如PC、ABS、共聚酯。在一个实例中,薄膜传导性部分6150F可以预成形,然后嵌入成型或以其他方式(例如,通过使用粘合剂)附接到塑料主体6140。例如,薄膜传导性部分6150F首先例如通过真空成形工艺形成为其工作构造。然后,可以将薄膜传导性部分6150F或插入件插入嵌入成型到塑料主体6140上。申请WO2018/094452提供了参考,该申请通过引用整体并入本文。薄膜的成型后定形当将薄膜板嵌入成型到聚碳酸酯加湿桶基部(也称为水贮存器基部)中时,薄膜的几何形状可能存在问题。通常,膜是预成形的(例如,冲压成深拉伸的台阶式形状),然后嵌入成型。然而,当模具冷却时,模具内不同位置的张力可能导致膜弯曲和扭曲。由于薄膜和水贮存器基部具有不同的机械特性和热膨胀系数/热收缩率,这就更加复杂了。因此,在冷却过程中难以控制膜的形状。一种减轻该问题的方法如下。代替预成形,在成型工艺之后形成膜的形状(成型后定形)。这就是说,人们可以将薄膜嵌入成型成平坦的薄膜,然后将它后成形为拉伸的形状。它将仍然在成型期间收缩。然而,当收缩/扭曲的膜后成形时,成形过程将使膜变紧/变直,从而实现更紧密的几何形状控制。在成型后定形工艺中,以某种形式的膜(例如平坦膜)开始。该膜为非最终形式(例如平坦构造)。然后,可以将塑料嵌入成型在平坦膜周围。在塑料成型之后,膜再次变形。然而,现在可以使用冲压、真空成形或热真空成形,从而产生所需的台阶式几何形状。在形成膜的这种最终几何形状的过程中,膜以受控方式拉伸,从而形成非常平坦的表面。真空成形的过程类似于模制的过程,因为它通常涉及温度和压力,尽管对于一些小的几何形状变化,仅压力可能就足够。为了良好地控制几何形状,我们需要良好地控制温度。为此,在台阶式几何形状的形成过程中,我们只软化薄膜,并试图不软化薄膜周围的塑料桶表面。因此,桶和膜的化学组成、后成形的温度和压力应当使得在成型后定形过程中只有膜软化,而不是桶软化。该形状不一定是台阶式的——它可以是具有一个或多个凹陷(张紧区域)的任何表面,这些凹陷消除平坦表面的松弛度。该技术还可以用于制造面罩、LCD窗口(用于具有抗菌性能的薄膜覆盖(该薄膜将覆盖能够聚集生物负载的任何间隙、边缘)。在一个实例中,膜可以用于制造面罩,即用于一次性面罩。薄膜优选地最适合于形成限定面罩的充气室的壁。然而,框架也可以包括薄膜体,其只有边缘由更硬的塑料形成并连接到密封件。面罩的几何形状可能复杂得多,例如,严格控制可能很重要。这可以通过后成形来完成。重要的是确保膜和剩余表面之间的均匀连接。当我们需要在成型后对薄膜进行加工时,为了使薄膜有效地进行,在成型过程之后需要经过一定的时间。该时间可以与成型膜的冷却和/或与冷却过程相关的收缩过程的阶段相关。这两个过程(冷却和收缩)都非线性地取决于时间,并且虽然紧密相关,但仍然是不同的过程。这是所提出的工艺的一个明显的优点,其允许膜定形工艺以与嵌入成型工艺相同的工具和设置中进行。这可以节省大量的时间和成本。为了成功地进行薄膜的成型后定形,重要的是遵循一个过程,该过程允许任何显著的尺寸变化(例如在膜上进行塑料成型期间发生的尺寸变化)在膜定形之前稳定。目的是使得在已经发生充分冷却而使得塑料接近尺寸稳定的阶段完成后成形。因此,成型后定形可以允许所形成的薄膜部件的尺寸控制和尺寸稳定性良好。此外,该方法适用于部件中存在窗口/开口的任何地方。窗口允许冲压工具接近薄膜并执行成型后定形步骤。具有多个窗口的布置与一个或多个大的膜部分一起使用,它们中的一个或多个被布置成覆盖多于一个的窗口。如图13C所示,薄膜传导性部分6150F包括底壁或板6152F、围绕板6152F的周边延伸的侧壁6154F以及将薄膜传导性部分6150F固定到塑料主体6140的接口部分6156F。如图13C所示,板6152F包括适于形成贮存器的底部内表面的第一侧6152.1F,其表面暴露于水。板6152F包括与第一侧相对的第二侧6152.2F,并且在一些情况下适于形成贮存器的底部外表面,其表面暴露于加热板。因此,板的第二侧6152.2F提供被构造和布置成与加热板6080直接接合的接触表面。在一个实例中,类似于先前关于金属热传导性板所描述的实例,6152F板可以包括预成形的弯曲或圆顶形状,即,第二侧6152.2F提供大致凸形的表面。当水贮存器6100被插入贮存器底座6050中时,水贮存器和加热板可以彼此偏压,使得弯曲板6152F将变平,例如变成基本上平坦的,以便使其自身与加热板6080的平坦表面对齐或适形。弯曲板6152F变平使得板6152F与加热板6080之间产生偏压,以确保良好的热接触并改善加热板与水贮存器内的水之间的热传递。在一个实例中,板的弯曲可以通过将薄膜传导性部分放置到主体的底壁中的较小开口中来形成,例如底壁中的较小开口压缩薄膜传导性部分以在板中形成弯曲。在一个替代性实例中,板6152F可包括大致平面形状,即预成形的平面形状。在示出的实例中,薄膜传导性部分6150F被配置成使得板6152F是偏移的并且大致平行于主体6140的底壁6144,即,板在底壁下方。在一个替代性实例中,薄膜传导性部分6150F可以被配置成使得板6152F大致与底壁6144共面,即从而实现贮存器基部具有基本上平坦的底表面。在另一实例中,薄膜传导性部分6152F可以被配置成在多于一个的平面中延伸,例如,薄膜传导性部分可以提供如图29所示的台阶式布置。在未示出的实例中,可以沿着薄膜传导性部分6150F的第一侧和/或第二侧设置一个或多个肋,例如,以增加薄膜传导性部分的刚性和/或增强适于将薄膜传导性部分推向加热板的力。在一个实例中,可以沿着薄膜传导性部分6150F的第一侧和/或第二侧设置金属薄层(例如,网),例如,以改善热传导性。在所示出的实例中,贮存器基部6112F1的板6152F包括矩形形状,例如对应于贮存器底座6050内的加热板6080的形状。然而,应当理解,板6152F可以包括其他合适的形状,其可对应于或可不对应于加热板的形状,例如圆形、正方形、椭圆形。例如,图14A至14C示出了贮存器基部6112F2,其中薄膜传导性部分6150F的板6152F是圆形的。图15A至15C示出了根据本技术的一个实例的贮存器基部6112MF1,其包括金属板和非金属薄膜的组合的分层布置作为传导性部分6150MF。在一个实例中,贮存器基部6112MF1包括三部分式构造,即,主体6140、金属传导性部分6150M以及薄膜传导性部分6150F。薄膜传导性部分6150F可以包括热传导性非金属材料,例如硅酮、聚碳酸酯或其他热塑性或弹性体材料,例如共聚酯。在一个实例中,薄膜传导性部分6150F可以包括约0.05mm至1mm,例如0.10mm至0.125mm的厚度。在一个实例中,薄膜可以包括小于约1mm,例如0.5mm,小于约0.5mm,例如0.40mm、0.375mm、0.25mm、0.175mm、0.125mm的厚度。在如图15B和15C所示的实例中,贮存器基部6112MF1包括底壁6144和围绕底壁6144的周边延伸的侧壁6142。在这样的实例中,薄膜传导性部分6150F不仅覆盖金属传导性部分6150M,而且延伸覆盖剩余底壁6144的至少一部分。这种布置确保了金属传导性部分6150M和底壁6144之间的连接边界被薄膜传导性部分6150F覆盖,以增强它们之间的水密封,并确保贮存器基部不漏水。为了更好的密封,薄膜传导性部分6150F不仅可以覆盖金属传导性部分6150M和底壁6144之间的连接边界,而且可以延伸以覆盖贮存器基部的侧壁6142的至少一部分。这在金属传导性部分6150M覆盖整个底壁6144并且可能覆盖侧壁6142的一部分,并且连接边界实际上位于金属传导性部分6150M与侧壁6142之间的情况下尤其重要。如所示出的,薄膜传导性部分6150F包括适于形成贮液器的底部内表面的第一侧6152.1F,其表面暴露于水。薄膜传导性部分6150F包括与第一侧相对的第二侧6152.2F,其适于接合金属传导性部分6150M和贮存器基部的底壁和侧壁6144、6142。金属传导性部分6150M形成贮存器的底部外表面,其表面暴露于加热板6080。因此,金属传导性部分6150M提供被构造和布置成直接与加热板6080接合的接触表面。这种布置的一个优点在于,是更耐刮擦的金属导热板6150M与加热板6080进行机械相互作用。在一个替代性实例(未示出)中,薄膜传导性部分6150F可以设置在贮存器的另一个外表面上,其中金属传导性部分6150M形成与贮存器的水内容物接触的内(上)表面。这种布置的优点在于,在这种情况下,薄膜传导性部分的化学组成和稳定性不太关键,例如,薄膜传导性部分不与贮存器中的水接触。在一个实例中,可以沿着薄膜传导性部分6150F的第一侧和/或第二侧设置一个或多个肋,例如,以增加薄膜的刚性和/或增强适于将薄膜/金属板推向加热板的力。在一个实例中,可以沿着薄膜传导性部分6150F的第一侧和/或第二侧设置金属层(例如,网),例如,以改善热传导性。在一个实例中,传导性部分6150MF的形状可以与加热板6080的形状相对应,例如,以获得稳定性、更有效的热传导性。例如,传导性部分6150MF和加热板6080可以包括圆形或非圆形形状,例如矩形、正方形、椭圆形。在所示出的实例中,传导性部分6150MF包括矩形形状,例如对应于贮存器底座6050内的加热板6080的形状。图16A至16C示出了另一替代性实例,其中贮存器基部6112MF2包括圆形传导性部分6150MF。图17A至17C示出了包括拉伸更深的矩形传导性部分6150MF的贮存器基部6112MF3。在一个实例中,薄膜传导性部分6150F和金属传导性部分6150M被提供为与主体6140分离且不同的结构,然后被固定或以其他方式设置于主体6140上的操作位置,例如,薄膜传导性部分6150F和金属传导性部分6150F包括被固定到主体6140的预成形结构。在一个实例中,主体6140包括塑料或热塑性聚合物材料,例如PC、ABS、共聚酯。在一个实例中,薄膜传导性部分6150F可以预形成形(例如,真空成形),然后组装到预成形的金属传导性部分6150M(例如,黏合、层压或简单地彼此接合)。然后,可以将薄膜/金属板热量传导组件部分嵌入成型到塑料主体6140上,即,将主体6140的底壁和侧壁注塑成型到薄膜/金属板组件上。在另一实例中,金属传导性部分6150M可以单独地嵌入成型到主体6140上,然后薄膜传导性部分6150F可以黏合到金属传导性部分6150M,以便至少覆盖金属传导性部分6150M,并且优选地覆盖主体6140的超出金属传导性部分6150M的区域,以便确保金属传导性部分6150M与主体6140之间的接触边界的可靠密封。在任何上述实例中,可以使用真空来去除薄膜传导性部分6150F和金属传导性部分6150M之间的气隙。此外,可以在薄膜传导性部分6150F与金属传导性部分6150M之间使用黏合(例如,粘合剂),例如,以维持组装并确保良好的热传导性。在一个实例中,金属传导性部分6150M和/或薄膜传导性部分6150F可以包括预成形的弯曲或圆顶形状,即,金属传导性部分6150M和/或薄膜传导性部分6150F的下侧提供大致凸形的表面。当水贮存器6100被插入贮存器底座6050时,弯曲的金属板/薄膜将变平,例如变成基本上平坦的,以便使其自身与加热板6080的平坦表面对齐或适形。弯曲的金属板/薄膜变平在金属板/薄膜与加热板之间产生偏压,以确保良好的热接触并改善加热板与水贮存器内的水之间的热传递。在一个实例中,金属板/薄膜的弯曲可以通过将金属板/薄膜放置到主体的底壁中的较小开口中来形成,例如底壁中的较小开口压缩金属板/薄膜以在金属板/薄膜中形成弯曲。在一个替代性实例中,金属板/薄膜可以包括大致平面形状,即预成形的平面形状。在示出的实例中,金属板/薄膜被配置成使得金属板/薄膜是偏移的并且大致平行于主体的底壁,即,金属板/薄膜在底壁下方。在一个替代性实施例中,金属板/薄膜可以被配置成使得金属板/薄膜大致与底壁共平面,即从而实现贮存器基部具有基本上平坦的底表面。在另一实例中,金属板/薄膜可以被配置成在多于一个平面中延伸,例如,金属板/薄膜可以提供如图29所示的台阶式布置。薄膜传导性部分6150F和金属传导性部分6150M的组合的有利之处可以在于,因为薄膜的非金属性质(例如,热塑性或弹性体材料性质)提供了腐蚀保护(例如,由于暴露于水而需要保护)并且改进了与底壁的密封(例如,以形成用于加湿水的密封的贮存器),而金属板的金属性质提供了良好的热接触、刚性和耐久性,例如,用于多患者多用途应用。贮存器盖如图18A、18B和19A至19G所示,贮存器盖6114被配置为连接到贮存器基部6112。该构造可以被布置成允许水贮存器能够在打开构造与关闭构造之间转换。例如,贮存器盖6114可以通过铰接销铰接地连接到贮存器基部6112。在一个替代性实例中,贮存器盖6114可以包括多个回弹锁定图片,多个回弹锁定突片适于与贮存器基部6112互锁,例如通过卡扣配合。在一个实例中,密封6116(例如,参见图19C)可以被设置于贮存器盖6114上,例如以防止水从盖6114与水贮存器的基部6112之间的连接边界流出。在一种形式中,贮存器盖6114可以由生物相容性材料构成,例如塑料或热塑性聚合物,例如PC、ABS、共聚酯等。如图18A和18B所示,贮存器盖6114可以包括入口管6120和出口管6130,入口管6120被布置成提供用于接收进入水贮存器的空气流的入口,出口管6130被布置成提供用于输送来自水贮存器的加湿的空气流的出口。当贮存器盖6114联接到贮存器基部6112时,入口管6120包括布置在腔室外部的外(入口)端6124和布置在腔室内部的内(出口)端6126。同样,出口管6130包括布置在腔室外部的外(出口)端6134和布置在腔室内部的内(入口)端6136。每个入口管或出口管(与每个管的相应入口和出口一起)可以由贮存器盖的壁中的开口代替。在一个实例中,入口密封6122设置于入口管6120的自由外(入口)端(参见图19A、19B、19D和21),和/或出口密封6132设置于出口管6130的自由外(出口)端(例如,参见图21)。入口和出口密封6122、6132是水贮存器的一部分而不是RPT装置的一部分,这使得每次更换水贮存器时能够更换密封,即,这是有用的特征,尤其是在一次性水贮存器的情况下。在一个实例中,每个密封包括波纹管式布置,波纹管式布置可以在两个连接部分之间提供一定程度的解耦。在一个实例中,入口密封和出口密封可以包覆成型到贮存器盖上。图80示出了类似于图6A、6B、7和8A至8D所示的根据本技术的一个实例的集成的RPT装置和湿化器6000。图80、85、86和134至136示出了根据本技术的另一实例的水贮存器6100和贮存器盖6114。在这个实例中,入口密封6122(例如,波纹管式布置)设置于入口管6120的自由外(入口)端,而出口管6130的自由外(出口)端没有设置密封。相反,如在下文中所讨论的,这样的密封可以设置于中间元件的入口,出口管6130被附接到该入口上。在使用中,当水贮存器6100以能够移除的方式与贮存器底座6050联接时,水贮存器6100的入口管6120(或入口)的入口密封6122被构造和布置成提供与贮存器底座6050的底盘出口7320(底座入口)的面密封(参见图100、131和133),并且中间部件9700的入口密封9715(在下文中更详细地描述)被构造和布置成提供与水贮存器6100的出口管6130(或出口)的出口端的面密封(参见图131和132)。此外,在该实例中,入口密封6122可以与周边密封6116一起包覆成型到贮存器盖6114上,周边密封6116被布置成在使用中在盖6114与基部6112之间形成密封(参见图85),例如,来自由弹性体材料制成的一体单件式部件的密封6122、6116。也就是说,如图85所示,贮存器盖6114(包括入口管6120和出口管6130)可以包括由相对刚性的材料(例如,热塑性聚合物(例如,PC、ABS))构成的第一部分或基体成型件,并且入口密封6122和密封6116可以包括由相对软的材料(例如,热塑性弹性体(TPE)或硅酮)构成的第二部分或包覆成型件,该第二部分或包覆成型件被提供给(例如,通过包覆成型)第一部分。此外,如80和85所示,拇指抓握部6133可以设置于(例如,机械互锁、卡扣配合)贮存器盖6144的顶部上,以便于手动操纵水贮存器6100和/或使水贮存器6100与贮存器底座6050互锁。拇指抓握部有助于在插入时对齐贮存器6100。它还有助于抓握和挤压贮存器6100的延伸到RPT装置和湿化器6000外部的部分(例如,参见图79)。由于周边密封6116的变形特性,当使用者按压拇指抓握部(挤压贮存器6100)时,密封屈服并且减小水贮存器6100的横向尺寸。这减少了在将水贮存器6100插入加湿底座或从加湿底座抽出水贮存器6100的过程中的摩擦,因此改进了总体用户体验。回溢保护在一个实例中,水贮存器6100可以被配置为阻止液体从其流出,例如当水贮存器从其正常的工作取向移位和/或旋转时。在一个实例中,如图19C至19G所示,入口管6120可以包括被布置在腔室外部的外(入口)端6124和布置在腔室内部的内(出口)端6126。入口管6120包括具有入口端6124的入口部分6123和具有出口端6126的出口部分6125。水贮存器的底部(例如,传导性部分6150)包括限定底部平面的底部表面,当水贮存器处于正常工作取向时(例如,参见图19C),底部平面基本上是水平的。如图19C至19G所示,入口管6120的不同部分可以在不同方向上延伸,例如,至少在沿着其长度的一个点处改变方向。例如,入口部分6123在基本平行于底部平面的平面中延伸,而出口部分6125在不同的方向上延伸(在这种情况下,出口部分6125在基本垂直于底部平面的平面中延伸)。可以在入口管6120的每个部分(取向)中引入不同的扭曲和/或转弯。如图19C至19G所示,出口管6130可以包括布置在腔室外部的外(出口)端6134和布置在腔室内部的内(入口)端6136。类似于入口管,出口管也可以在不同的方向上延伸,例如至少在沿其长度的一点处改变方向。同样类似地,出口管6130可以包括竖直扭曲(在基本上垂直于底部平面的平面中的弯曲),这样使得出口管6130从出口端6134向下弯曲到入口端6136,从而允许出口管6130在入口管6120的入口部分6123下方交叉。此外,出口管6130的入口端6136处的开口向上弯曲以防止喷溅(当水由于压力和流动而被推出出口管时发生喷溅)。图19D、19H-1、19H2和19I示出了入口管和出口管在水平平面中的方向变化,而图19C、19E和19F示出了在竖直方向上的类似转弯(相应的管有效地移动得更靠近或更远离由传导性部分6150提供的底表面)。在一个实例中,入口管6120的出口端6126和出口管6130的入口端6136可以被布置在贮存器腔室的几何中心或质心处或附近。入口管6120和出口管6130可以进一步被布置成使得当:(1)水贮存器处于工作取向,并且(2)水贮存器在至少一个方向上从工作取向旋转90度时,以下中的至少一项(并且优选地至少两项)在预先确定的最大水体积的水平高度之上:a.入口管6120的外(入口)端6124;b.入口管6120的内(出口)端6126;c.出口管6130的外(出口)端6134;以及d.出口管6130的内(入口)端6136。取决于上述入口/出口的布置以及水平和竖直位置,在一些实例中,当贮存器旋转90度时,相同的至少一个(或两个)入口/出口将升高到水的水平高度之上。在其他布置中,在操作构造中,至少一个(或两个)入口/出口将升高到水的水平高度之上,而当水贮存器倾斜90度时,其他至少一个(或两个)入口/出口将升高到水之上。例如,图19C示出了入口端6124、出口端6126、出口端6134和入口端6136在工作取向上都在水的水平高度之上,图19D示出了当水贮存器向前旋转90度时出口端6126和出口端6134在水的水平高度之上,而图19D示出了当水贮存器向后旋转90度时入口端6124和入口端6136在水的水平高度之上。此外,图19G示出了当水贮存器旋转180度时至少的出口端6126在水平之上。这种布置实现了回溢保护,以阻止水以各种取向进入水贮存器的入口管和出口管。另外,如图19C和19I所示,在操作构造中,入口管6120倾斜,使得其入口6124高于其出口端6126。因此,当水贮存器返回到其操作构造时,在其已被填充之后(并且在以各种角度旋转的过程中,包括在任何方向上旋转至少90度),入口管中的水朝向出口端(水室)而不是入口端(其在RPT装置的方向上)向下滴流。这可以防止当水贮存器被接纳在贮存器底座中时损坏RPT装置中的电子器件。如上所述,用于水贮存器的入口管6120和出口管6130可以是弯曲的并且在不同方向上延伸,例如在一个或多个平面中弯曲。弯曲的管6120、6130可以在将管入口和出口定位在水贮存器内的优选位置时实现更多的控制和灵活性,即,改进桶的水溢出保护。弯曲的管6120、6130可以允许更好地利用水贮存器中的空间并且更好地将所有贮存器元件集成为一个整体,并且允许在限定贮存器的气锁特征方面更灵活。在一个实例中,入口管6120和/或出口管6130还可以沿着其长度改变其直径(例如,参见图19D),例如,以便提供灵活性以将管定位在水贮存器中。如上所述,回溢特征涉及入口管和出口管6120、6130,它们的出口端6126/入口端6136位于水贮存器的中部(例如,在贮存器腔室的几何中心或质心处或附近),使得在水贮存器以各种角度意外翻滚时,当水贮存器仍包含一定量的水时,水的水平高度大部分保持在这些位于中心的入口管6120和出口管6130的出口端6126/入口端6136的水平高度之下。这就是管的弯曲形状可以提供帮助的地方。特别地,如果其中一个管被引导成使得其出口端6126/入口端6136位于水贮存器的中央,则另一个管可以不是简单地在第一管下方延伸(因此移动离开水贮存器的中央区域),而是可以被引导成在第一管下方弯曲,然后弯曲回到任何所希望的水平高度。在替代性设计中,管可以简单地在不同的高度彼此交叉。这种设计可以限定贮存器的两个侧面,当贮存器在这些侧面之一上倾斜时,入口管或出口管中的一个向上倾斜,从而将相应的桶内开口保持在水的水平高度之上。在这种情况下,另一个管将向下倾斜,并且桶内开口可能暴露于水,除非采取了缓解措施。本技术的弯曲设计可以减轻这个问题。入口管6120和/或出口管6130的弯曲可以是浅的或显著的弯曲。为了优化桶的内部空间,弯曲也可以在多于一个平面中。通过在第一弯曲之后引入第二弯曲可以进一步增强使管弯曲的概念,第二弯曲可以改变第一弯曲的方向或至少半径。这种形状背后的前提是它们可以对水在某些方向上的传播引入进一步的阻力。因此,在一个或多个平面/方向上延伸的这种连续的“扭结”可以在相应的一个或多个方向上提供阻力,因此防止贮存器的翻腾/翻滚/翻转。当然,可以根据设计的复杂性和提供给气流的阻力来权衡该益处。因此,贮存器内的弯曲的管可以使得能够改善贮存器的水溢出特征并且更好地利用空间。这可以使得能够从内部优化贮存器,并且减小贮存器的总体积。总效率改进允许配合更多的水或减小水贮存器的总尺寸。代替引入连续弯曲,在沿着其长度的期望点处,通过离散的角度,改变管的方向也可以实现类似的结果。在一个实例中,入口管6120和/或出口管6130可以被提供为与贮存器盖6114分离且不同的结构(例如,参见以下描述的图19H-1、19H-2和19I),然后被固定或以其他方式设置于贮存器盖6114上的操作位置。可替代地,入口管6120和/或出口管6130可以形成(例如,模制)为贮存器盖6114或贮存器基部6112的一部分(例如,参见图134至136,这些图示出了形成为贮存器盖6114的一部分的入口管6120和出口管6130)。在一个实例中,入口管6120和/或出口管6130可以包括与贮存器盖不同的材料(例如,更加柔性的材料),例如硅酮或TPE,以便于弯曲成所希望的构造。可替代地,入口管6120和/或出口管6130可以包括与贮存器盖类似的材料,例如聚碳酸酯。例如,图19H-1和19H-2示出了根据本技术的一个实例的用于水贮存器的能够移除的出口管布置。如图所示,能够移除的出口管布置包括出口管6130和入口管6120的一部分,例如,入口管6120的出口端6126。在这个实例中,入口管6120的入口部分6123和出口部分6125可以被形成(例如模制)为贮存器盖6114的一部分。能够移除的出口管布置被形成为与贮存器盖6114分离且不同的结构,然后被固定或以其他方式组装到贮存器盖6114上以便形成完整的入口和出口空气路径。例如,出口管6130的出口端6134被固定或以其他方式锚定到贮存器盖6114的侧壁上,并且出口端6126被接合或以其他方式锚定到入口管6120的出口部分6125的端部上。图19A至19G示出了被固定到贮存器盖6114上的操作位置的能够移除的出口管布置。图19I示出了一个替代性实例,其中入口管6120和出口管6130包括能够移除的入口管和出口管布置,能够移除的入口管和出口管布置是与贮存器盖6114分离且不同的结构,然后被固定或以其他方式设置于贮存器盖6114上的操作位置。贮存器盖与贮存器基部的铰链式连接图82至图97示出了根据本技术的一个实例的贮存器6100,其包括以能够移除的方式铰接地联接到贮存器基部6112上的贮存器盖6114。如图所示,水贮存器6100包括盖6114与基部6112之间的铰接接头,该铰接接头允许盖6114在打开位置(参见图84和89)与关闭位置(参见图82、83和91)之间铰接地移动。在所示的实例中,盖6114的每一侧包括具有向内延伸的铰接销9105的铰链臂9100(参见图86和87)。每个铰接销9105被配置为与设置在基部6112的每一侧上的相应的端部开口的槽缝或空腔9200接合(参见图86和88)。每个铰接销9105(参见图87)包括分段的圆柱形形状,该分段的圆柱形形状包括圆柱形表面9105c以实现铰接运动,以及平坦表面9105f以便于每个铰接销9105与相应的端部开口的槽缝9200(参见图88)接合/脱离。即,如图90所示,每个铰接销9105的横截面呈圆的主要部分。每个端部开口的槽缝9200提供分段的圆柱形表面9200c以实现相应的铰接销9105的铰接移动,并且开口端或侧9200o提供开口以便于每个槽缝9200与相应的铰接销9105的接合和脱离(参见图88)。如图94和95所示,为了将盖6114与基部6112组装或接合,将盖6114定向成使每个铰接销9105与相应的端部开口的槽缝9200对齐,然后将盖6114推向基部6112(例如,沿大致水平的方向),直到每个铰接销9105被推入相应的端部开口的槽缝9200中(例如,通过卡扣配合)。由于槽缝9200的开口具有柔性,铰接销可以以任何取向实现卡扣配合接合。然而,如果如图95所示,每个铰接销9105的平坦表面9105f大致水平地定向,这允许从平坦表面9105f延伸到相对的圆柱形表面9201c的铰接销9105的主要部分的横截面的较小宽度(或直径)与槽缝9200的开口端9200o接合,则实现盖的接合和脱离更加容易,从而允许铰接销9105相对容易地穿过开口端9200o进入槽缝9200的内部。然而,一对铰接销中的每一个提供的主要部分的较小宽度大于该对槽缝中的相应一个的开口端或开口侧的开口,使得即使当对齐时,也必须施加力以通过使每个开口向外折曲并释放该对铰接销中的相应一个来将该对铰接销从一对槽缝中撬出。一旦组装好,槽缝9200就铰接地保持相应的铰接销9105,以允许盖6114在打开位置(参见图89和90)与关闭位置(参见见图91和92)之间铰接地移动。如图82、91和93所示,盖6114包括夹子9120,夹子9120适于以能够释放的方式与基部6112上的一个或多个闩锁9220互锁,例如通过卡扣配合,以便在关闭位置将盖6114能够释放的方式固位或锁定到基部6112上。如图所示,夹子9120包括至少一个槽缝9122,例如一对槽缝,槽缝适于接纳对应的闩锁9220。如图83和93所示,夹子9120的自由端包括手指拉片9125,手指拉片9125从基部6112向外成角度,以便当使用者希望通过松开夹子9120来打开盖子时供使用者抓握。如图93所示,在一些实施例中,在每个闩锁9220的底部与夹子9120中的槽缝9122之间可具有一个小间隙G,例如0.2mm,这样使得当盖子处于关闭和锁定位置时,闩锁9220不处于恒定的负载下。然而,通常,周边回弹支撑构件6096向上推动盖,因此推动向上每个闩锁9220的底部,从而消除这种间隙。如图96和97所示,为了将盖6114从基部6112拆卸或脱离,盖6114被过度延伸或铰接地移动超过完全打开位置(即,远于止挡构件9110提供的旋转止挡)。在完全打开位置,铰接销的分段横截面的最小尺寸通常与相应的槽缝中的开口9200o对准。当进一步向后推动盖时,与侧壁9210接合的止挡构件9110开始充当悬臂并且朝向开口9200o推动铰接销。这使得开口9200o弯曲并将铰接销9105从相应的槽缝9200中释放。开口9200o和铰接销的分段横截面不是严格需要的,因为连续向后推动将最终使得止挡构件9110能够从槽缝9200中撬出铰接销,即使没有开口或分段横截面。然而,当盖6114过度延伸时,将开口以及铰接销9105提供的主要部分的较小宽度或直径布置在槽缝9200的开口端9200o处,确实使得盖的脱离更容易,即,当将铰接销9105的平坦表面9105f拉出或弹出槽缝9200时,铰接销9105的平坦表面9105f减小了铰链上的应力。此外,设置开口9200o改变了累积应力的位置。特别地,当通过将铰接销从槽缝9200中撬出而使盖脱离时,应力通常集中在盖的侧部9100中。相反,当设置了开口9200o时,在通过将铰接销从槽缝9200中撬出而使盖脱离时,应力通常集中在限定开口9200o的桶基部的部分中,因为该部分必须弯曲以增大开口的侧部,以便释放铰接销并使盖脱离。如图86和97所示,盖6114包括止挡构件9110,止挡构件9110适于当盖6114到达完全打开位置时接合基部6112的侧壁9210,例如允许盖6114停靠在完全打开位置。在一个实例中,当处于完全打开位置时,盖6114可以被定向成与基部6112相距略小于90度,例如约80-90度。在该位置,盖受到良好的平衡,使得其不会向前下落而关闭桶,同时其不会向后重压桶而使桶侧向倾斜。在一个替代性实例中,可以切换铰接销9105和槽缝9200的位置,例如,铰接销9105可以设置于基部6112而槽缝9200可以设置于盖6114。5.6.2.2贮存器底座在图20A所展示的实例中,贮存器底座6050设置于RPT装置的底盘组件7300,并且被配置和布置成用于接纳水贮存器6100。在一些布置中,贮存器底座6050可以包括锁定特征,例如锁定杆或突片,锁定特征被配置为将水贮存器6100保持在贮存器底座6050中。贮存器底座6050包括主体,该主体形成用于接纳水贮存器6100的空腔。如图20F和21中最佳示出的,贮存器底座6050的后壁包括底盘出口7320(也称为底座入口),底盘出口7320被构造和布置成接收来自RPT装置的出口的加压空气流,以输送到水贮存器6100。贮存器底座6050还可以包括底座出口6090,底座出口6090被构造和布置成连接到或以其他方式对接空气输送管4170或中间部件,然后中间部件连接到空气输送管4170上。在本技术的一个实例中,贮存器底座6050可以允许空气输送管4170与水贮存器6100形成直接的气动连接,这样使得已经在水贮存器6100中加湿的加压空气流被直接从水贮存器6100输送到空气输送管4170。贮存器底座6050的主体包括多个壁和加热元件(例如,加热板6080),加热元件设置在壁的底部以形成接纳水贮存器6100的空腔。水贮存器与贮存器底座的连接在使用中,通过将水贮存器6100插入到贮存器底座6050中,水贮存器6100以能够移除的方式联接至贮存器底座6050上。在水贮存器被布置成用于与空气输送导管4170直接接合(气动密封)的情况下,当水贮存器6100联接到贮存器底座6050(例如,参见图21)时,水贮存器6100的入口管6120(或入口)的入口密封6122被构造和布置成提供与贮存器底座6050的底盘出口7320(底座入口)的面密封。类似地,水贮存器6100的出口管6130(或出口)的出口密封6132被构造成提供与空气回路或空气输送管4170的面密封,例如以防止泄漏造成的气动压力损失。在所示的实例中,水贮存器6100被构造和布置成与空气输送导管4170形成直接的气动密封,完全绕过RPT装置和贮存器底座6050。贮存器底座6050便于这种直接连接,但不是其一部分。可以在输送管与水贮存器底座之间实现除气动连接意外的连接。例如,空气输送管可以被构造和布置成与水贮存器底座形成能够释放的机械/锁定连接和/或电连接。能够释放的机械(锁定)连接可以包括卡扣配合连接。将RPT装置和贮存器底座6050从空气输送路径移除,使得水贮存器6100与空气输送导管4170之间不存在位于内部的联接部件。这使得不需要拆卸和消毒这种联接部件,从而使消毒更容易。这样,当为不同的使用者准备该装置时,水贮存器6100是RPT装置唯一需要更换或消毒的部件。当水贮存器6100插入贮存器底座6050中并到达操作位置时,水贮存器6100的传导性部分6150与贮存器底座6050的加热板6080对齐并热接触,以允许热量从加热板6080传递到水贮存器6100中的水,例如传导性部分6150的表面接合或接触加热板6080的表面。可以引入偏压机构,偏压机构将水贮存器和加热板朝向彼此按压,从而改变传导性部分与加热板之间的热接触水平。在一个实例中,设置于水贮存器、贮存器底座和/或加热板的弹簧元件可以被布置成将水贮存器和加热板朝向彼此偏压,以增加接触压力并改善热接触。例如在图21中示出的底盘出口7320(底座入口)被配置成接收来自RPT装置的鼓风机的加压空气流,并将该空气流经由水贮存器6100的入口管6120传递到水贮存器6100中。当空气穿过水贮存器6100时,湿气(即,水蒸汽)被添加到空气流中,然后加湿的空气流穿过出口管6130离开水贮存器。空气直接从出口管6130流入空气输送管4170以将加湿空气流输送给患者。用于插入/移除的引导结构在一个实例中,水贮存器6100的外侧部分提供底座接合部分,底座接合部分被构造和布置成与贮存器底座6050的贮存器接合部分对接和接合。在一个实例中,水贮存器6100和贮存器底座6050可以包括引导结构以促进水贮存器6100与贮存器底座6050的插入、移除和对准。例如,如图6B所示,水贮存器6100沿着底座接合部分的相对侧可以包括引导表面(例如,由导轨6200提供),这些引导表面被布置成沿着贮存器底座6050的贮存器接合部分接合对应的引导表面(例如,由引导槽缝6060提供),以将水贮存器6100引导进入贮存器底座6050中。在一个实例中,如图6B所示,水贮存器6100可以沿着在横向方向(即,前-后方向)上延伸的路径插入(例如,仅通过滑动或推/拉)到贮存器底座6050的空腔中和从贮存器底座6050的空腔中移出。在一个替代性实例中,用于插入/移除水贮存器的路径的至少一部分可以在下-上方向上延伸,例如,用于将水贮存器插入到底座中的路径的至少一部分包括进入操作位置的斜坡,例如升高或下降。例如,水贮存器6100和贮存器底座6050的引导结构可以被构造和布置成提供水贮存器的初始水平或倾斜插入,随后在最后部分中下降到操作位置。在一个实例中,贮存器底座可以提供倾斜表面,倾斜表面的内部边缘位于底座的底表面上,在水贮存器下落到其操作位置之前必须越过该内部边缘。该被越过的边缘和/或下落本身可以有效地将水贮存器锁定在操作位置。还可以使用其他锁定特征。这种“推和落”结构包括在水平和垂直方向上都具有部件的桶的运动。任选地包含该边缘确保在将水贮存器插入贮存器底座的过程中,水贮存器的基部接合单个边缘或小表面,而不是被拖过一个更大得多的表面。这减少了对加热板的磨损和潜在损坏。弹簧元件可以布置(例如,在贮存器底座与水贮存器之间)以增加水贮存器与加热板之间的接触压力,例如,以改善水贮存器的基板与底座的加热板之间的热接触。图25A至27B示出了根据本技术的一个实例的引导结构,该引导结构用于促进水贮存器6100与贮存器底座6050的插入、移除和对准。在所示出的实例中,用于插入/移除水贮存器6100的接合路径在前-后方向上和下-上方向上延伸,即,接合路径包括水平分量和垂直分量两者。在所示出的实例中,贮存器底座6050的每一侧包括引导槽缝6060,引导槽缝6060被配置为接纳水贮存器6100的每一侧上的相应的引导突出部或销6250。如图所示,每个引导槽缝6060包括沿前-后方向延伸的大致水平区段6060H,大致水平区段6060H通向从大致水平区段6060H沿向下方向向下倾斜的下落区段6060D。如图28A至28C所示,贮存器底座6050包括凹陷的加热元件6085,加热元件6085被配置为接合水贮存器6100的传导性部分6150,以便允许热量从加热元件6085热传递到水贮存器6100中的一定体积的液体。如图所示,形成贮存器底座6050的底盘组件包括适于接纳加热元件6085(例如,热量发生部件,例如电阻性加热轨道)的凹陷开口。凹陷开口至少部分地由位于贮存器底座6050的前端或开口端处的底盘组件的前凸缘7350和位于贮存器底座6050的后部或内部处的底盘组件的后凸缘7360形成。加热元件6085通过保持板6095牢固地固定或保持在适当位置,保持板6095被构造和布置成将加热元件6085夹在底盘组件上,例如至少夹在底盘组件的前凸缘和后凸缘7350、7360上。在一个实例中,加热元件6085可以包括沿其周边的垫圈6086,例如硅酮珠,以将加热元件6085密封在底盘组件的凹陷开口内。水贮存器6100的传导性部分6150(例如,金属板)可以包括台阶式布置,其中传导性部分6150在多于一个平面中延伸。在一个实例中,例如参见图29,传导性部分6150包括在第一平面中延伸的第一热量传导部分6150.1,以及在第二平面中延伸的第二部分6150.2,第二平面在向上方向上偏离第一平面。多于一个平面中的每一个可以,但不是必须,在水平平面中延伸(参考水贮存器的操作配置)。贮存器底座6050和水贮存器6100的上述凹入构造允许水贮存器6100下落到加热元件6085上而进入其操作位置。具体地,当水贮存器6100插入到贮存器底座6050中时,水贮存器6100的引导销6250接合在贮存器底座6050的相应的引导槽缝6060内(例如,参见图25B和26A)。引导槽缝6060的大致水平区段6060H将水贮存器引导到贮存器底座,即,沿向前方向。当水贮存器6100沿着引导槽缝6060的大致水平区段6060H被引导时,水贮存器6100的传导性部分6150的第一热量传导部分6150.1接合支撑加热元件6085的前凸缘7350的上引导表面7355并沿其滑动(例如,参见图27A)。当水贮存器6100到达引导槽缝6060的下落区段6060D时,水贮存器6100的第一热量传导部分6150.1也越过前凸缘7350的内边缘,这使得水贮存器6100及其第一热量传导部分6150.1下落到与加热元件6085接合(例如,参见图25A、26B和27B)。也就是说,水贮存器6100的传导性部分6150的台阶式布置被配置为允许第一热量传导部分6150.1下落到与凹陷的加热元件6085接合,而第二(通常不传导热量)部分6150.2下落到与前凸缘7350接合(例如,参见图27B)。这种下落接合构造有效地将水贮存器6100锁定在操作位置,即,前凸缘7350提供引导表面7355,并且还允许水贮存器6100接合在其后以将水贮存器6100锁定在适当位置,并防止例如在治疗过程中当整个系统处于可能将水贮存器推出其操作构造的压力下时发生意外释放。在所示出的实例中,水贮存器6100的第一热量传导部分6150.1的大小被确定成基本上填充由凹陷加热元件6085(例如,参见图27B)提供的凹陷空间,例如以便防止任何水平移动。当水贮存器6100在接合过程中滑动越过前凸缘7350时,与沿着加热元件6085相反,水贮存器6100的底表面的接合部分(其可以包括加热板和水贮存器的底壁的其余部分中的一者或两者)接合在底座的底部的一个小得多的表面上,因此减少了对水贮存器6110(即,其传导性部分6150)和加热板的磨损和潜在损坏。此外,当水贮存器6100下落到加热元件6085上进入其操作位置时,与在加热元件6085上滑动相反,在一些构造中,加热元件6085可以沿其上部表面或上表面设置有加热板(也称为耐磨板或滑板,例如由硬金属材料形成)以保护加热元件6085。即,这种接合构造允许水贮存器6100的传导性部分6150直接接合加热元件6085,使得热量从加热元件6085直接传递到水贮存器6100中的一定体积的液体,即,由此提高导热性,因为热量不需要通过加热板或滑板。这样的布置也可以更具成本效益。在图27A和27B所示的实例中,贮存器底座的上壁部分包括弹簧负载闩锁6300,弹簧负载闩锁6300被布置成增加水贮存器6100与固定的加热元件6085之间的接触压力,例如以改善热接触。如图所示,当水贮存器6100到达其操作位置时,弹簧负载闩锁6300被布置成有回弹性地接合水贮存器6100的顶部,以将水贮存器6100向下偏压进入固定的加热元件6085中(例如,参见图27B)。为了移除,水贮存器6100可以受力抵抗弹簧负载闩锁6300的向下压力,直到它到达引导槽缝6060的大致水平区段6060H,以进行移除。应当理解,可以以其他合适的方式向水贮存器6100提供向下的力。例如,贮存器底座的导引导槽缝可以包括弹簧或其他偏压构件,弹簧或其他偏压构件被布置成将向下的力例如提供给水贮存器的引导销。在另一实例中,底盘组件可以包括贮存器底座的铰接盖,该铰接盖被配置为在水贮存器插入之后向下移动成与水贮存器接合以提供向下的力。在又一个实例中,底盘组件可以包括邻近贮存器底座的柱塞型元件,该柱塞型元件被配置为在水贮存器插入之后被按压成与水贮存器接合以提供向下的力。在替代性实例中,水贮存器6100和贮存器底座6050可以被布置成使得水贮存器6100可以首先下落到与加热元件6085接合,然后可以进一步沿着加热元件6085滑动到与弹簧负载闩锁6300接合。在该实例中,如图30至32B所示,每个引导槽缝6060包括自下落区段6060D延伸的附加的大致水平区段6060H2。此外,水贮存器6100的传导性部分6150的第一热量传导部分6150.1的尺寸可以减小,使得第一热量传导部分6150.1不填充由凹陷加热元件6085提供的凹陷空间,例如以允许进行水平移动。在使用中,当水贮存器6100到达引导槽缝6060的下落区段6060D时,水贮存器6100的第一热量传导部分6150.1越过前凸缘7350的内边缘并下落到与加热元件6085接合。然后,水贮存器6100可以进一步沿着附加的大致水平区段6060H2滑动到贮存器底座6050中,直到水贮存器6100在弹簧负载闩锁6300下方滑动到与弹簧负载闩锁6300接合(例如,参见图32B)。为了进行移除,水贮存器6100可以沿着附加的大致水平区段6060H2水平移动到脱离与弹簧负载闩锁6300的接合,直到它到达下落区段6060D,在该处,水贮存器6100可以在没有来自弹簧负载闩锁6300的压力的情况下沿着下落区段6060D和大致水平区段6060H被向上拉动离开贮存器底座6050。图80、81、91和98至101示出了根据本技术的另一实例的用于促进水贮存器6100与贮存器底座6050的插入、对准和接合的引导布置。在所示出的实例中,水贮存器6100包括一对引导或偏压导轨6200。如图所示,该对导轨6200中的每一个被设置于水贮存器6100的基部6112的相对侧中的相应的一侧。当水贮存器6100被插入贮存器底座6050时,该对导轨6200中的每一个被配置为与设置于贮存器底座6050的相对侧上的一对引导槽缝6060中的相应的一个接合,以引导水贮存器6100联接到贮存器底座6050。该对导轨6200中的每一个包括提供向上定向的表面9300的上边缘(参考装置的操作取向),并且该对引导槽缝6060中的每一个包括提供向下定向的表面9400的上边缘(参见图81、98和99)。当水贮存器6100被插入贮存器底座6050时,引导槽缝6060被布置成接纳导轨6200并且引导水贮存器6100插入底座6050中。除了该引导功能之外,还有由引导槽缝6060提供的附加的偏压功能。特别地,导轨6200的向上定向的表面9300被配置成至少在它们沿着图81中指示的箭头的轴向移动的最后的部分中与槽缝6060的相应的向下定向的表面9400接合并被向下推动或受力。该向下的压力迫使或向下按压水贮存器6100,以便在其操作构造中增强其热量传导性部分6150与设置在贮存器底座6050的底部处的加热组件6075的加热板6080的邻接(参见图98和99)。该对导轨6200中的每一个可以包括自其向上定向的表面9300延伸的一个或多个接合突片9315(例如,如图81、82和89中所示的单个接合突片),接合突片9315被配置为接合相应的槽缝6060的向下定向的表面9400,该接合增强了水贮存器6100朝向加热组件6075的移位,由此增强了与加热组件6075的加热板6080的邻接。突片可以位于相关联的向下定向的表面9400上,而不是位于向上定向的表面9300上。在导轨6200与槽缝6060之间的接合表面之一上设置这种突片确保了摩擦较小,因为仅单个突片的区域与相对表面机械接合,而不是整个表面。这使得水贮存器6100更平滑地插入底座6050或从底座6050撤回,改善了用户体验。在所示出的实例中,水贮存器6100的前侧或边缘还包括一个或多个偏压边缘或突片9320(例如,如图80中所示的一对偏压突片),压边缘或突片9320被配置为接合在一个或多个邻接边缘9450(例如,如图112中所示的一对邻接边缘)中的相应一个的下方,邻接边缘9450设置于贮存器底座6050的后壁(在底盘出口7320和底座出口6090下方)。当水贮存器6100完全插入底座6050时,这种接合锁定水贮存器6100的前端,并且向下偏压水贮存器6100,以便增强其传导性部分6150与设置在贮存器底座6050的底部处的加热组件6075的加热板6080的邻接(参见图100和101)。也就是说,将槽缝6060向下推动相应的导轨6200(位于水贮存器6100的后部的中间处,其中该前端是被布置成首先与贮存器底座6050接合的端部)上是由邻接边缘9450向下推动到位于水贮存器6100的前方或前侧处的相应的偏压突片9320上来补充的。当水贮存器6100几乎完全插入贮存器底座6050时,邻接边缘9450在接近接合过程结束时与相应的偏压突片9320(参见图101)的向上定向的表面9325接合。在这一点上,该对偏压突片9320被推动到邻接边缘9450中的相应的邻接边缘下方,邻接边缘9450大致水平定向。邻接接合被配置和布置成平衡由设置在贮存器底座6050的底部处的加热组件6075提供的方向向上的偏压力(例如,参见图98)。如下文更详细描述的,加热组件6075的加热板6080悬浮在回弹密封和支撑构件9500上,回弹密封和支撑构件9500被构造和布置成当水贮存器6100被插入贮存器底座6050时,将加热板6080向上偏压抵靠水贮存器6100的传导性部分6150。因此,由回弹密封和支撑构件9500提供的向上偏压力从下方推动加热板6080,加热板6080推动水贮存器6100,水贮存器6100抵接导轨6200抵靠相应的槽缝6060并且抵接偏压突片9320抵靠相应的邻接边缘9450。这种布置确保了水贮存器6100的传导性部分6150与水贮存器6100的加热板6080充分接触。在所示出的实例中,槽缝6060和邻接边缘9450被布置成大致水平(例如,大致平行于加热板6080),该布置允许水贮存器6100沿着在横向方向(即,前-后方向)上延伸的路径插入(例如,仅通过滑动或推/拉)贮存器底座6050的空腔中和从该空腔中移出。然而,在替代性实例中,槽缝6060和/或邻接边缘9450的至少一部分可以包括斜面,使得用于插入/移除的路径的至少一部分可以在下/上方向上延伸。此外,如图102所示,水贮存器6100的盖6114包括一个或多个保持突出部6115(例如,如图80和图85所示的一对保持突出部),其被构造和布置成以能够释放的方式接合贮存器底座6050中的相应的底座锁定边缘或锁定凹部6051,以能够释放的方式将水贮存器6100锁定和保持在贮存器底座6050内的操作位置,即,每个突出部6115接合在形成凹部6051的前端后方。突出部6115可以包括锥形,以促进突出部6115接合到相应的凹部6051中。为了进行释放,水贮存器6100可以被压缩(即,通过按压盖6114抵靠基部6112)以压缩可变形密封6116并且允许突出部6115降低或下落到凹部6051的前端下方。这种锁定布置确保组装好的RPT装置当处于其操作构造时,其内部的正压不会将水贮存器向后推动并且脱离与贮存器底座6050的操作接合,因此确保了装置的可靠操作。保持特征在一个实例中,如图33A至图33F所示,水贮存器6100可以包括闩锁6400,闩锁6400被配置为以能够释放的方式接合贮存器底座6050中的凹陷槽缝6055以将水贮存器6100以能够释放的方式保持在贮存器底座6050内的操作位置。这种锁定布置防止水贮存器从底座脱离,在一些布置中,在装置的操作期间,底座内的相对高的操作压力会促使水贮存器脱离。在所示出的实例中,闩锁6400被提供为与水贮存器6100分离且不同的结构,然后被固定或以其他方式设置于处于水贮存器6100上的操作位置,例如,闩锁6400包括被固定到贮存器盖6114或水贮存器6100的其他部分上的预成形结构。在一个实例中,闩锁6400包括塑料或热塑性聚合物材料。如图33E和33F所示,闩锁6400包括锁定杆6402、盖连接件6404,以及将锁定杆6402有回弹性地支撑到盖连接件6404的支撑构件6406。如图33G所示,贮存器盖6114包括凹部6260以接纳闩锁6400。凹部6260的每一侧包括导轨6262,凹部的底部包括锁定突片6264。每个导轨6262形成被配置为接纳盖连接件6404的相应侧的槽缝。盖连接件6404由导轨6262引导进入凹部6260,直到盖连接件6404的开槽端6405接合在锁定突片6264后方,以将闩锁6400固定到贮存器盖6114上的操作位置,例如参见图33C和33D。锁定杆6402包括位于锁定杆6402一端的保持突出部6403和位于锁定杆6402另一端的手指/拇指抓握部6407。锁定杆6402由回弹支撑构件6406支撑,使得保持突出部6403被有回弹性地偏压至锁定位置。当水贮存器6100到达贮存器底座6050中的操作位置时,闩锁6400的保持突出部6403被配置和布置成接合在形成贮存器底座6050中的凹陷槽缝6055的前凸缘上方和后方,例如参见图33B。保持突出部6403包括锥形,以促进保持突出部6403接合到凹陷槽缝6055中。该连接能够释放地将水贮存器6100固定到贮存器底座6050。手指/拇指抓握部6407可以被手动压下以使锁定杆6402枢转,因此使保持突出部6403抵抗构件6406的外部偏压而枢转到解锁位置,即,使保持突出部6403枢转出凹陷槽缝6055以允许从贮存器底座6050中移除水贮存器6100。空气输送管与贮存器底座的连接在一个实例中,例如,如图20A和23A至24B所示,空气输送管4170包括管部分4500、将空气输送管4170连接到贮存器底座6050和/或水贮存器6100的底座连接件/套4600(出口连接件),以及将空气输送管4170连接到患者接口3000的患者接口连接件/套4700(入口连接件)。在一个实例中,底座连接件4600被构造和布置成与贮存器底座6050形成机械和电气连接,并且与水贮存器6100和/或贮存器底座6050形成气动连接。这些连接将空气输送管4170定位并固定到贮存器底座6050或水贮存器6100,向与空气输送管4170相关联的加热元件和转换器提供电力、信息和控制信号,并允许加湿加压气体从水贮存器6100流动到患者接口3000。在空气输送管4170与水贮存器6100和贮存器底座6050接合的过程中,这些连接可以同时地或顺序地形成,例如,机械、气动或电气连接之一可以在其他连接之前完成。空气输送管4170的底座连接件4600包括保持特征,其提供与贮存器底座6050的底座出口6090的固定的不可旋转的连接。在一个实例中,如图23A和23B所示,底座连接件4600的保持特征包括一对有回弹性的快速释放压紧臂4610,即悬臂式弹簧臂或压紧按钮。每个弹簧或压紧臂4610可以包括倒钩端或突出部,倒钩端或突出部被构造成提供与底座出口6090的卡扣配合连接。在一个实例中,底座出口6090可以包括锁定构件(例如,槽缝),锁定构件被构造和布置成接纳压紧臂4610的相应的倒钩端。底座连接件4600的自由端包括围绕管开口的向外延伸的法兰或唇缘4620。法兰或唇缘4620提供大致平坦的接触表面4625。当底座连接件4600连接到底座出口6090时,底座连接件4600的自由端及其接触表面4625突出到贮存器底座6050的空腔中以允许与水贮存器6100的出口管6130接合,例如,如图22C所示。在图23A和23B的实例中,空气输送管4170的底座连接件4600包括纵向轴线A1(例如,与管的轴线对准,管的轴线也可以是与底座出口6090接合/脱离的轴线),以及接触表面4625,接触表面4625沿着轴线A2布置,轴线A2以与纵向轴线A1成例如45°的角度延伸。如下所述,这种布置将接触表面4625定向为与水贮存器6100接合。图20A和24A至24B示出了根据本技术的替代性实例的包括底座连接件4600的空气输送管4170。如所示出的,底座连接件4600的每一侧包括保持突出部4615,其被构造成提供与底座出口6090的卡扣配合连接。在一个实例中,如图20A至20C、20K和20L中最佳示出的,底座出口6090可以包括锁定布置6600,用于接纳空气输送管4170并以能够释放的方式将空气输送管4170保持在底座出口6090内的操作位置。如图所示,锁定布置6600包括按钮部分6605和从按钮部分6605延伸的锁定臂6610。每个锁定臂6610包括锁定突片6615,锁定突片6615被布置成接合底座连接件4600的相应的保持突出部4615。锁定布置6600被支撑在底座出口6090附近,使得其锁定臂6610和锁定突片6615被有回弹性地偏压到锁定位置。当空气输送管4170的底座连接件4600被插入相应的底座开口6091中并且到达贮存器底座6050的底座出口6090中的操作位置时,底座连接件4600的保持突出部4615被配置和布置成接合在锁定布置6600的相应的锁定突片6615上方和后方,例如参见图20K。在一些布置中,空气输送管4170的底座连接件4600可能必须被插入相应的底座开口6091中并旋转,以便实现与锁定布置6600的这种锁定接合。每个保持突出部4615和/或每个锁定突片6615可以包括锥形,以便于接合到锁定位置。这种连接将空气输送导管4170以能够释放方式固定到贮存器底座6050,例如参见图20D至20H。如图20L所示,按钮部分6605可被手动地压下,以有回弹性地弯曲锁定臂6610及其锁定突片6615来抵抗被偏压到解锁位置,即,锁定突片6615横向向外移动脱离与底座连接件4600的保持突出部4615的接合,以允许从贮存器底座6050的底座出口6090移除空气输送导管4170。一旦建立了连接,由底座连接件4600/锁定布置6600提供的保持特征,以及由底座出口6090的底座开口6091(参见图20C)和底座连接件4600提供的非圆形接合轮廓提供空气输送导管4170与底座出口6090的固定的不可旋转的连接。底座连接件4600的自由端包括围绕管开口的向外延伸的法兰或唇缘4620,例如参见图20A、20G、20I和20J。法兰或唇缘4620提供接触表面4625。当底座连接件4600连接到底座出口6090时,底座连接件4600的自由端及其接触表面4625突出到贮存器底座6050的空腔中以允许与水贮存器6100接合,例如参见图20F至20H。类似于上述实例,图20A和24A至24B中所示的底座连接件4600的接触表面4625沿着与管的纵向轴线成角度(例如45°)延伸的轴线布置。水贮存器/空气输送管——在45°下直接接合上面已经讨论了水贮存器6100和空气输送导管4170之间的直接气动连接。在图18A和18B所示的实例中,水贮存器6100包括轴线A1(例如,与插入/移除的方向对齐),并且出口管6130(或出口)的外端及其出口密封沿着与轴线A1成角度(例如,45°)延伸的轴线A2布置。如以上关于图23A和23B所描述的,空气输送管4170的底座连接件4600包括轴线A1(例如,与空气输送管4170的插入/移除方向对齐),并且底座连接件4600的接触表面4625沿着与轴线A1成角度(例如,45°)延伸的轴线A2布置。当空气输送管4170与水贮存器6100和/或贮存器底座6050的底座出口6090接合时,水贮存器6100的出口管6130(或出口)和出口密封6132被构造成沿着空气输送管4170的底座连接件4600的自由端密封地接合或对接抵靠接触表面4625,例如参见图21和22A至22C。这种接合在水贮存器6100与底座连接件4600之间提供了面密封以密封出口流动路径,出口流动路径允许加湿空气流出水贮存器6100并进入空气输送管4170以输送到患者接口3000。出口管6130(和出口密封6132)和接触表面4625的接合轮廓(例如,呈45°)允许在空气输送管4170保持附接到底座出口6090的同时将水贮存器6100从贮存器底座6050移除。类似地,该45°角允许空气输送管4170与底座脱离接合,而不需要将水贮存器6100从贮存器底座6050的出口6090移除。因此,水贮存器6100的插入和移除可以独立于空气输送管4170与底座出口6090的连接,即,水贮存器6100和空气输送管4170可以独立地与贮存器底座6050接合/脱离。应当理解,出口管6130(和出口密封6132)和接触表面4625可以以其他合适的角度布置以便彼此直接接触。在替代性实例中,空气输送管4170可以不直接接触贮存器底座6050。相反,可以提供管适配器以将空气输送管4170互连到贮存器底座6050。管适配器可以包括用于连接到贮存器底座6050的底座连接件端和用于连接到空气输送管4170的锥形/ISO(标准化)端。管适配器可以包括锁定特征,以防止当管适配器连接到贮存器底座6050的底座出口6090时空气输送管4170从管适配器移除。数据收集在一个实例中,空气输送管4170可以包括围绕空气输送管4170的轴线(例如,沿着空气输送导管4170的管部分4500)螺旋地缠绕的多条导线,例如,这些导线被配置为加热空气输送管中的空气和/或将信号从一个或多个转换器(例如,温度传感器、流量传感器)传输到RPT装置的控制器。在一个实例中,空气输送管4170可以包括四根导线,例如,两根导线用于为一个或多个加热元件供电,两根导线用于连接温度传感器/转换器。然而,应当了解,可以使用其他数目的导线,例如,两根导线、三根导线或五根或更多根导线。在一个实例中(例如,参见图23B和24A),空气输送管4170的底座连接件4600包括接触组件4650,接触组件4650包括触头4655,触头4655在使用中与设置于贮存器底座6050的相应的触头接合,以在底座出口处与贮存器底座形成电连接,从而提供电力和/或控制信号传输。在一个实例中,底座连接件4600的触头4655可以连接到沿着空气输送管4170延伸的相应的导线。在替代性实例中,触头4655中的至少一些与沿着空气输送管4170延伸的导线不相关,但其特点是具有其自身独立和/或独特的电特性(例如电阻、电导等)。这种独立和/或独特的电特性可以用于识别管/患者接口系统的一个或多个元件,或这些元件的特性。在一个实例中,贮存器底座6050的底座出口6090包括与贮存器底座内的电力和电信号通信的接触组件6800,例如PCBA7600。在一个实例中,接触组件6800包括与设置于空气输送管4170的底座连接件4600的触头4655的数量相对应的触头6805,例如图20B、20C、20H至20J所示的四个触头。在一个实例中,如图20H至20J所示,每个触头6805包括弹簧负载销(例如,弹簧针)。在使用中,弹簧负载销6805将在与底座连接件4600接合期间有回弹性地偏转,以保持与底座连接件4600的相应的触头4655接触。在所示的实例中(例如,参见图20J),接触组件6800还包括被布置成接合PCBA7600的触头6810(例如,弹簧负载销)。触头6805、6810由支撑构件6815支撑,支撑构件6815被配置为将触头6805定向为基本上垂直于触头6810。因为空气输送管4170的接触组件4650中的每个触头4655或触头的组合可以具有独特的电特性,所以在一个实例中,空气输送管4170的接触组件4650可以用作空气输送管4170和/或患者接口的各种参数的标识。例如,接触组件4650可以被配置为识别空气输送管4170的类型(例如,非加热管、加热管、具有热湿交换器(HME)的管、未知的管)、空气输送管的尺寸(例如,15mm、19mm)、HME的存在和类型、连接到管的患者接口的类型等。识别产生的数据可以由控制器传送和使用,例如,以优化RPT装置、湿化器的操作,以便于数据收集等。例如,控制器可以被配置为识别由接触组件4650提供的独特识别特征,这样使得控制器可以识别联接到贮存器底座6050上的空气输送管4170的具体特性,因此控制器可以自动地配置RPT装置和/或湿化器以优化操作。在一个实例中,底座连接件4600可以包括锥形支撑突出部4630(例如,参见图20A、20M和20N)。当空气输送管4170的底座连接件4600连接到贮存器底座6050的底座出口6090时,锥形支撑突出部4630适于邻近设置于底座出口6090的一个或多个锥形支撑突出部6850布置或与之接触,如图20M和20N最佳所示。锥形支撑突出部4630、6850在底座连接件4600与底座出口6090之间提供接口,以将底座连接件4600保持为与底座出口6090的前表面大致垂直,例如,接口防止底座连接件4600从底座出口6090下垂或向下倾斜。例如,底座连接件4600与底座出口6090之间的接口可以抵消接触组件6800施加到底座连接件4600的力,该力趋向于迫使底座连接件4600向下,例如,接触组件6800的弹簧负载销施加的力偏离底座连接件4600的轴线,该力可以迫使底座连接件4600以向下的角度远离底座出口6090。卡口式连接和中间部件图43至78示出了用于将空气输送管4170连接到贮存器底座6050和水贮存器6100的替代性实例。在该实例中,中间部件6700以能够移除的方式联接到贮存器底座6050上。中间部件6700被配置为将水贮存器6100气动地连接到空气输送管4170,使得已经在水贮存器6100中加湿的加压空气流可以从水贮存器6100经由中间部件6700输送到空气输送管4170。此外,在该实例中,空气输送管4170的底座连接件4600被构造和布置成与贮存器底座6050形成卡口式连接,该卡口式连接将空气输送管4170与贮存器底座6050机械地和/或电气地连接。也就是说,卡口式连接将空气输送管4170定位并固定到贮存器底座6050和/或向与空气输送管4170相关联的加热元件和转换器提供电力、信息和控制信号。中间部件如图43、46、49、57和58所示,中间部件6700设置于贮存器底座6050的底座出口6090,以气动地将水贮存器6100连接到空气输送管4170。在所示出的实例中,中间部件6700以能够移除的方式联接到贮存器底座6050,这样使得中间部件6700可以被拆卸以便进行清洁、消毒和/或更换,例如用于多患者多用途(MPMU)应用。如图53至56所示,中间部件6700包括管状部分6705,管状部分6705包括适于与水贮存器6100对接的入口端6710和适于与空气输送管4170对接的出口端6720。中间部件6700还包括保持和对准特征,该保持和对准特征被构造和布置成将中间部件6700与贮存器底座6050对准,并提供与贮存器底座6050的能够拆卸的不可旋转的连接。此外,中间部件6700包括端口6730,例如用于插入用于测量底座出口6090处的空气压力的传感器的压力端口。端口6730包括端口密封6735以提供传感器(例如压力传感器)与中间部件6700之间的密封接口。在示出的实例中,例如参见图56,管状部分6705(包括入口端6710和出口端6720)连同保持和对准特征包括由相对刚性的材料(例如,热塑性聚合物(例如,PC、ABS))构成的第一部分或基体成型件,并且端口密封6735包括由相对软的材料(例如,热塑性弹性体(TPE)或硅酮)构成的第二部分或包覆成型件,该第二部分或包覆成型件被提供给(例如,通过包覆成型)第一部分。因此,中间部件6700提供了基本上刚性的构造,例如用于获得MPMU应用的耐久性。在所示出的实例中,入口端6710被布置成与出口端6720成角度,例如,入口端的轴线被布置成相对于出口端的轴线成约90°。然而,应当理解的是,其他合适的角度是可能的,例如,入口端的轴线被布置成相对于出口端的轴线成约45°。入口端6710的自由端包括围绕管开口的法兰或唇缘6712。法兰或唇缘6712提供接触表面6715。当水贮存器6100联接到贮存器底座6050上时,水贮存器6100的出口管6130(或出口)的出口密封6132被构造成与入口端6710的接触表面6715接合并提供面密封。在一个替代性实施例中,水贮存器6100的出口管6130(或出口)与入口端6710的接触表面6715之间的密封可以是入口端6710的整体部分,或者可以是独立于出口管6130或入口端6710的密封部分。在所示出的实例中,接触表面6715包括进入管开口的锥形,例如以增强密封并防止泄漏。出口端6720可以包括ISO锥形,例如22mm外径的ISO锥形,用于连接到空气输送导管4170。关于保持和对准特征,中间部件6700包括一对回弹压紧臂6740,即悬臂式弹簧臂。每个弹簧或压紧臂6740可以包括倒钩端或突片6745,倒钩端或突片6745被构造成提供与设置在贮存器底座6050的空腔内的相应的锁定构件(例如,突出部6750)的卡扣配合连接,如图46所示。中间部件6700还包括引导轨6760,引导轨6760被构造和布置成通过与延伸到贮存器底座6050的空腔中的相应的引导槽缝6755接合来帮助中间部件6700正确对准和插入贮存器底座6050中,如图46、50和52所示。此外,中间部件6700包括法兰6770,法兰6770被布置在入口端6710与出口端6720之间,以通过邻接设置于贮存器底座6050的法兰或壁来帮助将中间部件6700定位或置于贮存器底座6050中,例如,法兰在插入过程中充当止挡件,如图72所示。中间部件6700的法兰6770可以包括一个或多个切口或凹部6772,例如用于容纳沿着法兰或壁设置于贮存器底座6050的紧固件或突出部,如图57和58所示。当中间部件6700被插入贮存器底座6050的底座开口6091中时,中间部件6700被定向成使其引导轨6760与引导槽缝6755接合,这正确对准并将中间部件6700引导到操作位置。此外,底座开口6091和/或由锁定和接触组件6900在底座开口6091处提供的开口6919包括非圆形轮廓,以便于在插入期间正确定向中间部件6700,如图63所示。当中间部件6700到达操作位置时,弹簧或压紧臂6740的倒钩端或突片6745被配置和布置成接合在相应的突出部6750上方和/或后方,例如参见图46。每个倒钩端6745和/或每个突出部6750可以包括锥形以便于接合到操作位置。在一个实例中,弹簧或压紧臂6740与突出部6750的接合可以提供感官反馈,例如可听见的咔嗒声,以指示正确连接。这种卡扣配合连接将中间部件6700以能够释放的方式固定到贮存器底座6050上。为了使中间部件6700脱离接合,可以手动地将弹簧或压压紧臂6740朝向彼此下压(例如,使用或不使用工具),以使弹簧或压紧臂6740及其倒钩端6745有回弹性地挠曲而抵抗被偏压到解锁位置,即,使倒钩端6745移动脱离与突出部6750的接合,以允许将中间部件6700从贮存器底座6050移除。一旦建立了连接,由中间部件6700/贮存器底座6050提供的配合的保持和对准特征提供中间部件6700与贮存器底座6050的底座出口6090的能够移除的不可旋转的连接。同样,一旦被连接,中间部件6700的弹簧或压紧臂6740就被锁定地接合在贮存器底座6050的空腔内,例如,以防止当水贮存器6100被接纳在贮存器底座6050中时中间部件6700被移除。当中间部件6700连接到贮存器底座6050的底座出口6090时,其入口端6710和接触表面6715突出到贮存器底座6050的空腔中以允许与水贮存器6100的出口管6130(或出口)的出口密封6132接合,例如参见图46。类似地,中间部件6700的出口端6720在贮存器底座6050的空腔内延伸和/或突出到外部,以允许与空气输送管4170接合,例如参见图43。此外,中间部件6700的端口6730被定向为例如如图57所示向上,以与和PCBA相关联的传感器对接。卡口式锁定和接触组件如图43至52所示,锁定和接触组件6900设置于贮存器底座6050的底座出口6090,以将贮存器底座6050机械地和电气地连接到空气输送管4170。在所示出的实例中,锁定和接触组件6900包括卡口式连接,该卡口式连接被构造和布置成将空气输送管4170定位和固定到贮存器底座6050上并形成机械、气动和电气(电力和控制信号两者)连接。如图59至62所示,锁定和接触组件6900包括基部6910、设置于基部上的(电)接触组件6950,以及设置于基部6910上以封闭接触组件6950的至少一部分的盖部6970。基部6910包括后壁6912,后壁6912例如通过一个或多个紧固件固定到围绕底座开口6091的一个或多个壁上,以便将基部6910固定在贮存器底座6050的底座出口6090处。如图63所示,后壁6912包括开口6915(例如,非圆形的),开口6915与底座开口6091对准以允许插入和连接如上所述的中间部件6700,例如,非圆形开口6915适于接纳中间部件6700的非圆形轮廓。此外,如上所述,后壁6912在组装期间为中间部件6700提供止挡,例如中间部件6700的法兰6770的至少一部分可以邻接后壁6912,如图72所示。基部6910包括从后壁6912向外突出的环形侧壁6920。当中间部件6700连接到贮存器底座6050上时,中间部件6700的出口端6720和环形侧壁6920配合以形成用于接纳空气输送管4170的通道6780。保持壁6930沿着环形侧壁的周边的一部分,例如沿着环形侧壁的上侧的一部分,从环形侧壁6920径向向外突出。参考图57,沿着环形侧壁的周边的一部分在环形侧壁6920中设置间隙,该间隙形成了通向通道6780中的凹部6940。凹部6940邻近保持壁6930,并从保持壁6930逆时针方向布置。如下所述,凹部6940和保持壁6930被构造和布置成使得空气输送管4170的底座连接件4600的一部分可以插入凹部6940中,然后顺时针旋转,以移动到保持壁6930后方,从而实现空气输送管与底座之间的锁定接合。另外的保持和对准特征(例如,凹陷和/或凹槽)沿着环形侧壁6920的周边设置于环形侧壁6920,这些保持和对准特征被构造和布置成在接合过程中与空气输送管4170的底座连接件4600上的对应的特征相互作用,如以下讨论的。如图60至62所示,电接触组件6950由邻近保持壁6930的基部6910支撑。接触组件6950与贮存器底座6050(例如PCBA7600)内的电力和电信号通信。如图所示,接触组件6950包括支撑构件6952和由支撑构件6952支撑的多个触头6955,例如四个触头。每个触头6955包括弹簧臂6956(在图61中看得最清楚),弹簧臂6956被偏压离开支撑构件6952。在使用中,当管与底座接合时,弹簧臂6956将在与底座连接件4600接合期间有回弹性地偏转,以保持与底座连接件4600的相应触头的接触。接触组件6950还包括电连接器6958,例如柔性电路板(FCB)、柔性印刷电路(FPC)和/或柔性扁平电缆(FFC),以将触头6955电连接到PCBA7600(参见图62)。基部6910的上侧包括触头支撑结构6960(图62),触头支撑结构6960被构造和布置成支撑和保持接触组件6950(图61)的支撑构件6952,支撑构件6952在环形侧壁6920的径向向外和保持壁6930的轴向向内方向支撑接触组件6950的触头6955。盖部6970固定到基部6910的上侧以至少包围支撑构件6952和触头6955(参见图60)。电连接器6958例如通过基部中的一个或多个槽缝从基部6910突出,以连接到PCBA7600(图62)。底座连接件如图43至45所示,空气输送管4170的底座连接件4600被构造成与中间部件6700形成气动连接,并与设置在贮存器底座6050上的锁定和接触组件6900形成机械和电气连接。在所示出的实例中,底座连接件4600包括管状基部部分4640和设置于基部部分4640的锁定和接触组件4660。如图64至68所示,管状基部部分4640包括伸入基部部分4640的开口中的径向唇缘密封4645。径向唇缘密封4654在处于其松弛的未变形形状时提供小于中间部件6700的出口端6720的外径的内径,底座连接件与中间部件6700气动接合。例如,径向唇缘密封4645提供的内径可以小于约22mm(例如,约19至21mm或更小),以与包括22mm外径的ISO锥形的出口端6720一起使用。在使用中,径向唇缘密封4645被构造成在与中间部件6700的出口端6720接合时有回弹性地变形,以便提供与中间部件6700的气动连接,例如,径向唇缘密封4645形成抵靠中间部件6700的出口端6720的外表面的气密密封。如图所示,径向唇缘密封4645以一定角度朝向基部部分4640的内部延伸,以提供用于将底座连接件4600与中间部件6700进行对准和接合的引导。此外,基部部分4640内的止挡表面4647(参见图66)提供止挡,以防止中间部件6700进一步插入底座连接件4600中。基部部分4640包括邻近锁定和接触组件4660从基部部分4640向外突出的锥形突出部4642(参见图64)。锥形突出部4642提供拇指和/或手指抓握部,以便于底座连接件4600与中间部件6700和设置于贮存器底座6050的锁定和接触组件6900的手动操作和连接。此外,基部部分4640包括沿其相对侧的回弹保持凸起4644。如下所述,保持凸起4644被构造和布置成在接合期间与设置在贮存器底座6050上的锁定和接触组件6900的基部6910上的保持和对准特征(例如,凹部和/或凹槽)相互作用。在所示的实例中,如图68所示,基部部分4640可以包括由相对刚性的材料(例如,热塑性聚合物(例如,聚丙烯(PP)、聚碳酸酯(PC)和丙烯腈丁二烯苯乙烯(ABS))构成的基部4640bs(例如,包括一个或多个部分)和由相对软的材料(例如,热塑性弹性体(TPE)或硅酮)构成的包覆成型件4640ov,包覆成型件4640ov被提供给(例如,通过包覆成型)基部4640bs。如图所示,相对刚性的基部4640bs可以形成包括锥形突出部4642和回弹保持凸起4644的管状基部部分4640的结构形状,而相对软的包覆成型件4640ov与径向唇缘密封4645一起形成管状基部部分4640的外部。如图64所示,锁定和接触组件4660包括保持部分4665、以与基部部分4640间隔开的关系支撑保持部分4665的支撑臂4662,以及设置于保持部分4665的接触组件4666。如下所述,保持部分4665被构造和布置成在保持壁6930后方旋转,保持壁6930设置于贮存器底座6050上的锁定和接触组件6900,以将底座连接件4600轴向锁定在锁定位置。接触组件4666包括触头4667,触头4667在使用中被布置成与设置在贮存器底座6050上的锁定和接触组件6900上的相应触头6955接合,以形成与贮存器底座6050的电气和控制信号连接。底座连接件4600旋转到锁定位置时,触头4667沿着保持部分4665布置以形成电气和信号连接。电连接器4668(例如柔性电路板(FCB)、柔性印刷电路(FPC)和/或柔性扁平电缆(FFC))将触头4667电连接到沿着空气输送管4170和/或电路元件延伸的相应导线。如图64所示,接触轨道沿着圆周方向延伸,这使得允许它们在底座连接件4600在锁定和接触组件6900内旋转时启动和保持电连接。底座连接件与贮存器底座的接合图43至45和69至78示出了空气输送管4170的底座连接件4600与贮存器底座6050的接合。如图43所示,底座连接件4600被定向成使其锁定和接触组件4660与贮存器底座6050上的锁定和接触组件6900提供的凹部6940对准。然后,将底座连接件4600推向贮存器底座6050,使得中间部件6700的出口端6720延伸到基部部分4640的开口中,并且径向唇缘密封4645抵靠出口端6720的外表面接合并有回弹性地变形。当底座连接件4600被进一步推向贮存器底座6050进入未锁定的接合位置时,底座连接件4600的径向唇缘密封4645接合中间部件6700的出口端6720的外表面并沿其滑动。如图44和69至72所示,当底座连接件4600到达未锁定的接合位置时,底座连接件4600的基部部分4640容纳在由基部6910和中间部件6700形成的通道6780内,并且底座连接件4600的锁定和接触组件4660容纳在凹部6940内。在一个实例中,基部部分4640的前端可以接合中间部件6700的法兰6770,和/或基部部分4640内的止挡表面4647可以接合出口端6720的自由端,以防止底座连接件4600进一步插入锁定和接触组件6900中。此外,当底座连接件4600到达未锁定的接合位置时,底座连接件4600的保持凸起4644被定向为接合在设置于基部6910的环形侧壁6920的相应凹部内,例如凸起4644中的一个接合在闭合的细长凹部6922内,而凸起4644中的另一个接合在端部开口的凹部6924内。将凸起保持在接合凹槽内的摩擦力可以被校准成足以在装置处于操作压力下时将管保持在该接合但未锁定的构造。因此,在该构造中,在管与底座之间可以存在完全可操作的气动接合。然而,未完成机械接合。而且,在这种构造中,管和底座不电连通。如图45和73至78所示,底座连接件4600从未锁定的接合位置沿着顺时针方向旋转到锁定位置,锁定位置将底座连接件4600锁定到贮存器底座6050并与贮存器底座6050形成电气和控制信号连接。当底座连接件4600到达锁定位置时,保持部分4665在环形侧壁6920设置于锁定和接触组件6900的保持壁6930上方和后方旋转,这防止底座连接件4600从贮存器底座6050轴向向外拉动。而且,沿着保持部分4665的触头4667被旋转成与设置于锁定和接触组件6900的触头6955的相应的弹簧臂6956接合,形成与贮存器底座6050的电气和控制信号连接。此外,当底座连接件4600到达锁定位置时,一个凸起4644在闭合的细长凹部6922内旋转,而另一个凸起4644旋转出端部开口的凹部6924并进入相邻的端部开口的凹部6926内。凸起4644在相应凹部内的这种接合提供保持力,提供对准特征,并在接合期间提供触觉反馈。另外,锁定和接触组件6900可以包括止挡壁6935(参见图70),止挡壁6935被布置成当底座连接件4600到达锁定位置时接合底座连接件4600的锁定和接触组件4660,以防止底座连接件4600进一步旋转,例如参见图74。在该实例中,底座连接件4600与贮存器底座6050的连接被配置成使得在电气和机械连接之前完成气动连接。在另一实例中,电气连接、气动连接和机械连接可以在底座连接件旋转到锁定位置时或通过从连接去除旋转功能而同时形成。为了允许从贮存器底座6050移除空气输送导管4170,底座连接器4600可以沿逆时针方向从锁定位置旋转到未锁定的接合位置。这将底座连接件4600的锁定和接触组件4660旋转到由锁定和接触组件6900提供的凹部6940中。这种旋转使底座连接件4600与贮存器底座6050电脱离,并允许底座连接件4600被向外拉离贮存器底座6050以脱离接合。直插式连接和中间部件图110至133示出了空气输送管4170的底座连接件4600与加湿桶6100之间的接合的替代性实例。该布置包括用于将空气输送管4170连接到贮存器底座6050和水贮存器6100的中间部件9700的不同构造,如图116至120中最佳所示。在该实例中,中间部件9700以能够移除的方式联接到贮存器底座6050上,并且被配置为将水贮存器6100气动地连接到空气输送管4170上,这样使得已经在水贮存器6100中加湿的加压空气流可以从水贮存器6100经由中间部件9700输送到空气输送管4170。此外,在该实例中,中间部件9700被配置为还以能够释放的方式机械地/锁定地连接到空气输送管4170上,这将空气输送管4170定位并且以能够释放的方式保持到贮存器底座6050上。此外,该布置是这样的,当空气输送管4170与中间部件9700机械地锁定并且气动地接合时,它还可以与贮存器底座6050形成电气连接。该电气连接向与空气输送管4170相关的加热元件和转换器提供电能、信息和控制信号。以下连接中的每两个;锁定机械接合、气动接合和电气接合可以顺序地或基本上同时地实现。如果依次实现这些接合,则实现接合的具体顺序可以改变。在一个实例中,在将空气输送管连接到中间部件的过程中,首先实现气动接合,然后基本上同时实现机械/锁定接合和电气接合。在另一实例中,在将空气输送管连接到中间部件时,可以基本上同时实现锁定机械接合、气动接合和电气接合。在以上关于图43至78描述的实例中,底座连接件4600与中间部件6700气动地密封并且与贮存器底座6050机械地连接(锁定)。与图110至133所示的后一实例相反,空气输送管4170的底座连接件4600与图110至133的实例中的中间部件9700形成气动密封和机械(锁定)连接。通过将气动连接和机械连接结合到一个部件中,可以改善尺寸公差,这可以使底座连接件4600更可靠并且更容易制造,并且还可以允许减小底座连接件4600的尺寸。中间部件如图110、112、113和115A所示,中间部件9700设置于贮存器底座6050的底座出口6090并与之机械接合,以将贮水池6100气动连接到空气输送管4170并将空气输送管4170机械连接到贮存器底座6050。在所示出的实例中,中间部件9700以能够移除的方式联接到贮存器底座6050,这样使得中间部件9700可以被拆卸以便进行清洁、消毒和/或更换,例如用于多患者多用途(MPMU)应用。如图113和116至120所示,中间部件9700包括管状部分9705,管状部分9705包括入口端9710和出口端9720。在图120中最佳示出的入口端9710设置有入口密封9715,入口密封9715适于与水贮存器6100对接,并且出口端9720适于与空气输送管4170对接。管状部分9705还包括保持和对准特征,该保持和对准特征被构造和布置成将中间部件9700与贮存器底座6050对准,并提供与贮存器底座6050的能够拆卸的不可旋转的连接。此外,管状部分9705包括端口9730(在图120中最佳示出),例如用于与传感器(例如压力传感器)和/或麦克风通信。在所示出的实例中,端口9730设置有端口密封件和/或膜9735,以在端口9730和与传感器和/或麦克风相关联的底盘开口7380(参见图115C3)之间提供密封接口和/或覆盖。在一个替代性实例中,端口9730可以不包括端口密封或膜。此外,中间部件9700包括保持特征,该保持特征被构造和布置成提供与空气输送管4170的底座连接件4600的能够移除的连接。在示出的实例中(例如,参见图120),管状部分9705(包括入口端9710、出口端9720,以及保持和对准特征)包括由相对刚性的材料(例如,热塑性聚合物(例如,PC、ABS))构成的第一部分或基体成型件,并且入口密封9715和端口密封9735包括由相对软的材料(例如,热塑性弹性体(TPE)或硅酮)构成的第二部分或包覆成型件,该第二部分或包覆成型件被提供给(例如,通过包覆成型)第一部分。图120中的中间部件9700的软部件与剩余的硬材料部件空间分离仅是为了说明的目的,实际上,软材料部件可以永久地连接到相应的刚性部件上,并且图119的构造可以是整体的中间部件9700,其不能被拆分成图120所示的单个部件。在所示出的实例中,其入口端9710和入口密封9715被布置成与出口端9720成角度,例如,入口密封9715处的开口的轴线被布置成相对于出口端9720处的开口的轴线成约90°(参见图119)。然而,应当理解的是,其他合适的角度是可能的,例如,入口密封9715的轴线被布置成相对于出口端9720的轴线成约45°。当水贮存器6100联接到贮存器底座6050上时,中间部件9700的入口密封9715被构造和布置成沿着水贮存器6100的出口管6130(或出口)的出口端接合接触表面并提供抵靠接触表面的面密封(参见图131和132)。这种接合密封了出口流动路径,出口流动路径允许加湿空气流出水贮存器6100并进入中间部件9700以便输送至空气输送管4170。如图所示,入口密封9715可以包括波纹管式布置,波纹管式布置是弹性可压缩的,以在中间部件9700与水贮存器6100之间提供一定程度的解耦。在一个替代性实施例中,水贮存器6100的出口管6130(或出口)与中间部件9700之间的软材料和/或柔性材料密封可以是出口管6130的整体部分,或者可以是独立于出口管6130或中间部件9700的密封部分。出口端9720(例如,参见图115C3)可以包括ISO锥形,例如22mm外径的ISO锥形,用于联接到空气输送导管4170上。关于将中间部件9700对准并保持到贮存器底座6050的保持和对准特征,中间部件9700包括回弹压紧臂9740(例如,参见图116至118),即悬臂式弹簧臂。弹簧或压紧臂9740可以包括倒钩端或突片9745,倒钩端或突片9745被构造成提供与锁定构件(例如,横杆9750)的卡扣配合连接,锁定构件设置在贮存器底座6050的空腔内(参见图112和114)。中间部件9700还可以包括引导轨9760(沿着中间部件9700的下侧)和引导肋9761(沿着中间部件9700的前上侧),引导肋9761被构造和布置成通过与延伸到贮存器底座6050的空腔中的相应的引导槽缝9755(例如,参见图114、115B、116、117)接合来帮助中间部件9700正确对准并插入贮存器底座6050。此外,中间部件9700包括法兰9770(例如参见图116),法兰9770被布置在入口端9710与出口端9720之间以便帮助定位和/或放置中间部件9700,并且更特别地,限制中间部件9700在贮存器底座6050中的插入深度。法兰9770通过邻接设置于贮存器底座6050上的壁而实现,例如,法兰在插入期间用作止挡件,如图115C3和115E所示。如图115D、115E和120所示,可以提供一个或多个缓冲件9775(例如,由热塑性弹性体(TPE)或硅酮构成)以在插入期间使法兰9770与底座壁的邻接软化,并在使用中吸收振动。除了使中间部件9700的振动最小化之外,缓冲件的柔性特性确保了一旦它们被压下,则产生向后推动倒钩突片9745并确保突片与横杆9750处于恒定锁定接合的弹簧力。这使得倒钩突片9745与横杆9750之间的锁定接合中的振动,以及脱离接合的可能性最小。在所示的实例中,第一缓冲件9775设置在中间部件9700的上侧,第二缓冲件9775设置在中间部件9700的下侧(参见图115D和115E)。在一个实例中,缓冲件9775可以与入口密封9715和端口密封9735(参见图120)一起附接到底座壁或包覆成型到管状部分9705。关于将空气输送管4170的底座连接件4600保持到中间部件9700的保持特征,中间部件9700包括从法兰9770沿着出口端9720向外突出的部分环形侧壁9790(参见图120)。如图120所示,出口端9720和部分环形侧壁9790配合以形成接纳空气输送管4170的环形通道9780。部分环形侧壁9790的相对内侧中的每一侧包括孔或凹部9792,孔或凹部9792适于在接合期间接纳设置于空气输送管4170的底座连接件4600的相应的保持凸起4644(参见图123)。在示出的实例中,在部分环形侧壁9790(沿其上侧,参见图120)中设置间隙,以容纳并促进空气输送管4170的底座连接件4600的电气连接。此外,中间部件9700包括下突片9795(例如图120),下突片沿着部分环形侧壁9790的周边的一部分(沿着其下侧)从部分环形侧壁9790向外和向下突出。下突片9795可以充当手指或推动突片,以便于将中间部件9700插入到贮存器底座6050中/从贮存器底座6050撤回。此外,下突片9795可以被配置和布置成覆盖或隐藏集成的RPT装置和湿化器6000的外护罩与底盘部件之间的一个或多个紧固件9799(例如(螺钉)或边缘)(参见图110和113)。当中间部件9700被插入到贮存器底座6050的底座开口6091中时,中间部件9700被定向成使其引导轨9760和引导肋9761与相应的引导槽缝9755接合,这正确对准并将中间部件9700引导到操作位置(例如,参见图113)。此外,底座开口6091和中间部件9700的部分环形侧壁9790包括非圆形轮廓以便于中间部件9700在插入期间的正确定向。中间部件9700和贮存器底座6050之间的尺寸和相互作用也可以布置成使得贮存器底座6050的底座开口6091(该开口接纳中间部件9700)可以具有比中间部件9700的横截面稍大的横截面(例如,参见图115C1)。然而,在更靠近插入路径的末端处(例如,参见图115C2),可以存在一个或多个缓冲件,例如缓冲器9751和/或缓冲件9752,它们提供升高或缓冲点,提升或缓冲点升高中间部件9700的内边缘或表面9758(例如,沿着压紧臂9740和引导轨9760),使得中间元件9700的整个前端被提升。因此,端口密封9735可以移动到或准备好与底盘开口7380密封接合。然后,进一步插入中间部件可以使中间元件的一部分与底盘开口的相应部分形成邻接接合,从而防止进一步插入。此时,端口9730的端口密封9735被移动成与底盘开口7380(例如,参见图115C3)密封接合,或者被布置成保持该密封接合,如果这种接合已经形成的话。如图115C所示,突片9795可以包括肋或缓冲件9753,肋或缓冲件9753提供被布置成与底座对接的附加升高或缓冲点。上述布置将使中间元件插入底座开口6091期间的摩擦最小化,同时在处于接合构造时仍确保端口密封9735与底盘开口7380之间的密封接合。由于在使用过程中可能向中间元件9700施加较大的力,可以使用多于一个缓冲点(例如在缓冲件9751和9753处的升高点,或在缓冲件9751、9752和9753处的升高点)来增加稳定性。包括这种多个支撑/升高点可以帮助确保9730处的稳固且恒定的密封,即使在治疗期间患者可能拉动管的情况下。另外,中间元件的坚固支撑使得连接的管能够更容易地连接到中间元件和从中间元件移除。当中间部件9700到达操作位置时,弹簧或压紧臂9740的倒钩端或突片9745被配置和布置成接合在横杆9750下方和后方,例如参见图112。倒钩端9745和/或横杆9750可以包括锥形,以便于接合到操作位置。在一个实例中,弹簧或压紧臂9740与横杆9750的接合可以提供感官反馈,例如可听见的咔嗒声,以指示正确连接。这种卡扣配合连接将中间部件9700以能够释放的方式固定到贮存器底座6050上。为了使中间部件9700脱离接合,可以将弹簧或压紧臂9740手动地压向贮存器底座6050的后部(例如,使用或不使用工具)。这种压力将弹簧或压紧臂9740和倒钩端9745有回弹性地挠曲到解锁位置,即,其中倒钩端9745移动脱离与横杆9750的接合,以允许从贮存器底座6050移除中间部件9700。一旦中间部件9700被插入并锁定到贮存器底座605的底座开口6091中,由中间部件9700/贮存器底座6050提供的配合的保持和对准特征提供中间部件9700与贮存器底座6050的底座出口6090的能够移除的不可旋转的连接。同样,一旦被连接,中间部件9700的弹簧或压紧臂9740就被锁定地接合在贮存器底座6050的空腔内,例如,以防止当水贮存器6100被接纳在贮存器底座6050中时中间部件9700被移除。当中间部件9700连接到贮存器底座6050的底座出口6090时,其入口密封9715伸入贮存器底座6050的空腔中,以允许与水贮存器6100的出口管6130(或出口)接合(参见图112和图131)。类似地,出口端9720连同其部分环形侧壁9790和孔9792一起在贮存器底座6050的空腔内延伸和/或伸出到空腔之外,以允许与空气输送管4170接合,例如参见图110和115A。此外,其端口9730和端口密封9735被定向为例如如图115C3所示向上,以和与传感器和/或麦克风相关联的底盘开口7380对接。电气连接如图110、115A、121和122所示,电接触组件9950设置于贮存器底座6050的底座出口6090,以将贮存器底座6050电连接到空气输送管4170并形成电气(电力和控制信号两者)连接。如在图121和122中最佳示出的,接触组件9950由贮存器底座6050沿着贮存器底座6050的底座出口6090处的底座开口6091的上侧支撑。接触组件9950与贮存器底座6050(例如PCBA7600)内的电力和电信号通信。如图所示,接触组件9950包括支撑构件9952和由支撑构件9952支撑的多个触头9955,例如四个触头。每个触头9955可以包括弹簧臂9956(在图122中看得最清楚),弹簧臂9956被偏压离开支撑构件9952。在使用中,当空气输送管4170的底座连接件4600与贮存器底座6050接合时,弹簧臂9956将在与底座连接件4600接合期间有回弹性地偏转,以保持与底座连接件4600的相应触头4667的接触。接触组件9950还包括电连接器9958,例如柔性电路板(FCB)、柔性印刷电路(FPC)和/或柔性扁平电缆(FFC),以将触头9955电连接到PCBA7600(参见图122)。如图110和115A所示,外部壳体或外护罩8050(包围底盘组件7300和贮存器底座6050)为接触组件9950提供盖部或包围,并形成通向触头9955(阴连接器)的插座或开口9980,用于与底座连接件4600(阳连接器)的相应触头接合。底座连接件如图110至111所示,空气输送管4170的底座连接件4600被构造成与中间部件9700形成气动和机械连接,并与设置于贮存器底座6050的接触组件9950形成电气连接。在所示出的实例中,底座连接件4600包括管状基部部分4640和设置于基部部分4640的接触组件4661(参见图110)。如图123至126所示,管状基部部分4640包括伸入基部部分4640的入口开口中的径向唇缘密封4645。径向唇缘密封4654在处于其松弛的未变形形状时提供小于中间部件9700的出口端9720(图115A)的外径的内径,底座连接件与中间部件9700气动接合。例如,径向唇缘密封4645提供的内径可以小于约22mm(例如,约19至21mm或更小),以与包括22mm外径的ISO锥形的出口端9720一起使用。在使用中,径向唇缘密封4645被构造成在与中间部件9700的出口端9720接合时有回弹性地变形,以便提供与中间部件9700的气动连接,例如,径向唇缘密封4645形成围绕并抵靠中间部件9700的出口端9720的外表面的气密密封。如图125中最佳示出的,径向唇缘密封4645以一定角度朝向基部部分4640的内部延伸,以提供用于将底座连接件4600与中间部件9700进行对准和接合的引导。此外,基部部分4640内的止挡表面4647(参见图125)提供止挡,以防止中间部件9700进一步插入底座连接件4600中。锥形突出部4642邻近接触组件4661从基部部分4640向外突出(参见图123)。锥形突出部4642提供拇指和/或手指抓握部,以便于底座连接件4600与中间部件9700和设置于贮存器底座6050的接触组件9950的手动操作和连接。如图111所示,锥形突出部4642可以包括对准标记,该对准标记被配置和布置成当空气输送管4170连接到贮存器底座6050时与设置于贮存器底座6050的对准标记对准,以确保在使用中空气输送管4170的底座连接件4600与贮存器底座6050正确对准且正确连接。此外,如图123所示,基部部分4640包括在基部部分4640的相对侧的每一侧上的回弹保持凸起4644。如下所述,保持凸起4644被构造和布置成在接合期间与设置在中间部件9700上的相应的孔9792相互作用,以便保持底座连接件4600与中间部件9700操作接合,并因此与整个RPT装置6000操作接合。如图123所示,接触组件4661(引线框)包括支撑部分4665和沿支撑部分4665的前侧包括的多个触头4667,例如四个触头。如图所示,支撑部分4665包括台阶形结构,以与基部部分4640间隔开的关系支撑触头4667。触头4667被布置成与设置于贮存器底座6050上的接触组件9950的相应触头9955接合,以形成与贮存器底座6050的电气和控制信号连接。在所示出的实例中,触头4667被布置成阳连接器,贮存器底座6050上的触头9955被布置为阴连接器,阳连接器被配置为当插入与阴连接器接合时,形成电气和信号连接,即,直的或直接的插入式连接。支撑部分4665提供电连接器以将触头4667电连接到沿着空气输送管4170和/或电路元件延伸的相应导线。如图123所示,触头4667的轨道被升高(与套的主体间隔开)并且在轴向方向上延伸,这允许它们在底座连接件4600被插入其中布置有触头9955的插座9980中时启动并维持电气连接。然而,应当理解,支撑部分和/或触头可以具有替代的构造和布置,例如,取决于设置在贮存器底座6050的底座出口6090处的接口布置或连接机构。在所示出的实例中,如图126所示,底座连接件4600可以包括支撑接触组件4661(引线框)的基部组件4680(包括基部4682和盖部4684)。在一个实例中,接触组件4661可以首先与基部4682接合或互锁,然后盖部4684可以夹在基部4682上或以其他方式与基部4682接合,以将接触组件4661牢固地支撑并保持在操作位置。基部组件4680由相对刚性的材料(例如,热塑性聚合物(例如,PP、PC、ABS))构成,并且由相对软的材料(例如,热塑性弹性体(TPE)或硅酮)构成的包覆成型件4690被提供给(例如,通过包覆成型)基部组件4680。如图所示,相对刚性的基部组件4680可以形成管状基部部分4640、锥形突出部4642和回弹保持凸起4644的结构形状,而相对软的包覆成型件4690形成管状基部部分4640和锥形突出部4642的软的外部并形成径向唇形密封4645。底座连接件与贮存器底座的接合图110至111和127至130示出了空气输送管4170的底座连接件4600与贮存器底座6050的接合。如图110所示,底座连接件4600被定向成使其接触组件4661与通向贮存器底座6050上的接触组件9950的插座9980对准。然后,将底座连接件4600轴向地推向贮存器底座6050,使得中间部件9700的出口端9720延伸到基部部分4640的开口中,并且径向唇缘密封4645抵靠圆柱形出口端9720的外表面接合并有回弹性地变形。当底座连接件4600的径向唇缘密封4645在底座连接件4600被进一步推向贮存器底座6050时与中间部件9700的出口端9720的外表面接合并沿其滑动,直到它到达锁定位置,其中接触组件4661延伸到插座9980中,以使触头4667与触头9955的相应的弹簧臂9956接合并形成与贮存器底座6050的电气和控制信号连接(参见图111和129至130)。此外,当底座连接件4600到达锁定位置时,底座连接件4600的基部部分4640被接纳在由中间部件9700形成的通道9780内,并且保持凸起4644被配置和布置成接合在设置于中间部件9700的部分环形侧壁9790的相应的孔9792内,以在操作压力下将底座连接件4600以能够释放的方式保持在锁定位置(参见图127至128)。保持凸起4644在相应的孔9792内的这种接合可以在接合期间提供触觉反馈。在锁定位置,底座连接件4600与中间部件9700气动地且机械地接合,并且电连接到贮存器底座6050的电触头。此外,如图123、125和126所示,底座连接件4600可以包括一个或多个内部肋4648,内部肋4648被配置成沿着中间部件9700的出口端9720的外表面接合,以帮助底座连接件4600相对于中间部件9700定位和对准。在一个实例中,基部部分4640的前端可以接合中间部件9700的法兰9770,和/或基部部分4640内的止挡表面9647可以接合中间部件9700的出口端9720的自由端。该邻接防止底座连接件4600进一步插入到插座9980和中间部件9700中,并在插入过程中用作止挡件(参见图127至130)。在一个实例中,底座连接件4600与贮存器底座6050的连接被配置成使得在电气和机械连接之前完成气动连接。在一个实例中,电气连接和机械连接可以在气动连接之后同时形成,或者电气连接和机械连接可以在气动连接之后顺序形成。在另一实例中,当底座连接件插入锁定位置时,气动连接、电气连接和机械连接可以同时形成。为了将空气输送导管4170从贮存器底座6050移除,可以用足够的力将底座连接件4600向外拉离贮存器底座6050,以将保持凸起4644从相应的孔9792释放。管识别的实例图35A示出了根据本技术的一种形式的底座和管连接的示意图。底座出口6090可以包括接触组件6800,接触组件6800可以经由四个连接联接到管4170的对应的接触组件4172。底座出口6090可以机械地且电气地联接到管4170。如图35A所示,接触组件6800包括耦接到处理电路(例如PCBA7600)的四个连接。两个连接(加热器+和加热器-)耦接到加热器控制电路,两个连接(+传感器和-传感器)耦接到感测电路。在一些实例中,+传感器和-传感器连接可以耦接到NTC传感器。在一些实例中,感测电路还可以连接到连接(加热器+和加热器-)。加热器控制电路和感测电路可以包括在湿化器中,例如PCBA7600。加热器控制电路可以经由开关(例如,晶体管)向管4170中的加热元件供电。加热器控制电路可以控制提供给管4170中的加热元件的脉冲宽度调制(PWM)信号的持续时间、电压和/或频率和/或周期。感测电路可以被配置成接收来自设置在管4170中的转换器(例如,负温度系数(NTC)热敏电阻)的信号,指示管4170中的加热元件的操作。转换器可以设置在管的面罩近端。例如,感测电路可以测量转换器的电压和/或电流以确定加热元件的操作特性(例如,温度)。加热器控制电路可以基于感测电路接收的信号和用于加热管4170的设置设定来控制加热元件。也可以以类似的方式连接设置在管中任何位置的其他传感器,即湿度传感器。感测电路可以自动地识别连接到底座6050的管4170的类型。连接到底座6050的管的类型可以由感测电路基于管4170中的有源和/或无源部件通过四个电连接器6805中的一个或多个提供的独特电特性来确定。基于连接到底座的管4170的指示类型,控制器可以改变系统的操作参数。例如,可以为不同的管(例如,非加热管、加热管、具有热湿交换器(HME)的管、未知的管)提供不同的加热控制设置。在一些实例中,可以基于所识别的空气输送管的尺寸(例如,15mm、19mm)、HME的存在和类型、连接到管的患者接口的类型等来修改设置。连接到底座6050的管的类型可以由感测电路基于管4170中的有源和/或无源部件通过四个连接器中的一个或多个提供的独特电特性来确定。如图35A所示,管4170包括四个连接,用于联接到接触组件6800中的相应的四个连接。管中的连接可以是实心销(如图24A所示),但不限于此。在一些实例中,这些连接可以由(例如)引线框端子提供。在一个实例中,当管4170连接到底座时,其中一个装置中的实心销连接到另一个装置中的对应的弹簧针(例如,参见图20J)。如图35A中所示,第一电路元件8022耦接到管4170中的两个引脚,第二电路元件8024耦接到管4170中的两个其他引脚。虽然在图35A中示出了单个电路元件,但是第一和/或电路元件可以包括多个有源和/或无源电路元件。第一电路元件8022可以包括管4170中的加热元件和/或一个或多个其他元件。第一电路元件8022可以表示加热元件的电阻。第二电路元件8024可以包括由负温度系数(NTC)材料形成的热敏电阻形式的传感器。第二电路元件8024的参数(例如,电阻)可以随着管的温度变化而改变。感测电路可以被配置为通过监测第二电路元件8024的参数的变化来感测管4170的温度。图35B示出了根据本技术的一种形式的底座和管连接的电路图。图35A中的第一电路元件8022可以由耦接到加热器+连接和加热器-连接的两个电阻器5R(大约5欧姆)表示。这与加热丝通常包括一个或多个(通常两个)铜丝相关,铜丝彼此顺序连接并且具有大约10欧姆的总电阻。导线的组合长度从管的底座联接端延伸到管的面罩联接端,并返回到管的底座联接端。图35A中的第二电路元件8024可以由热敏电阻和耦接到NTC+连接和NTC-连接的两个电阻器5R表示。图35A中的热敏电阻可以基于空气管的类型来选择。可以在15mm空气管中设置10k热敏电阻,可以在19mm空气管中设置100k热敏电阻,并且可以在无源空气管中设置开路。加热丝8022通常沿管的长度分布,传感器8024通常位于管的面罩端。因此,加热丝和传感器连接导线都延伸管的长度。感测电路可以使用第一电路元件和第二电路元件来识别连接到底座6050的管的类型。在一些实例中,一个或多个触头针的独特电特性可以用于识别管的参数。当第一电路和第二电路元件提供不同电阻值时,可以允许湿化器中的控制电路确定所连接的管的类型以及哪些控制参数用于系统的操作。感测电路可以测量第一电路元件和/或第二电路元件的电阻以确定管的类型。可替代地,另外的电引脚(除了图35和36中展示的四个引脚之外)可以被包括在空气输送管4170的底座连接件4600中,这些电引脚与独特的特性(例如电阻)相关联并且可以用于指示参数,例如类型,以及与该管相关联的其他特性。作为实例,不同类型的管可以包括:(1)4线15mm加热管可提供2×5R的加热器导线电阻,25℃时NTC电阻值为10K;(2)4线19mm加热管可以提供的加热器导线电阻为2×5R,25℃时的NTC电阻值为100K;以及(3)无源非加热管可以具有标准ISO锥形。因此,通过测量第二电路元件(例如,NTC)和第一电路元件(例如,加热器导线)的电阻组合(在以上情况(1)和(2)中),检测一个或多个独立引脚或其组合的电特性,或检测两对连接(以上情况(3))上的开路,来检测所连接的管类型。该系统还可以被配置成自动检测所连接的有源管中的单个故障状况,例如在四根管线中的任一根上的短路或开路,以及加热器导线的非合法值(非贯穿裂纹),以及管线之间的交叉短路。本技术的实例不仅提供了管与底座的直接联接,而且提供了电适配器。虽然这种适配器可以允许与不同类型的加热丝管的底座进行连接,但其主要目的是便于与能够在近端具有或不具有HME无源湿化器的情况下操作的无源空气管的底座联接。使用这样的适配器的两个主要应用是:(a)允许无源空气管与底座机械连接,以及(b)为系统提供检测无源空气管的装置。图36示出了根据本技术的上述形式的底座和管连接的示意图。如图36所示,底座的接触组件6800可以通过适配器8020联接到无源管4170。适配器8020提供与底座的接触组件6800的电气连接,无源管4170中通常不存在电气连接。在一个实例中,管4170可以提供与底座6050的机械连接,并且管适配器8020可以提供电气连接。在一些实例中,管适配器8020还可以机械地联接到底座。图24A至24B示出了根据本技术的一种形式的管4170和管适配器8020的机械连接。在一些实例中,适配器8020可以是接触组件的一部分。适配器8020可以被制造成管4170的整体部分,或者是能够从管4170移除的。以这种方式,不具有诸如加热元件和/或传感器的电气部件的空气管可以设置有电路元件,以识别连接到底座6050的空气管的种类。与在管4170中包括第一电路元件和第二电路元件8022和8024的图35A相反,图36所示的实例在适配器中包括第一电路元件和第二电路元件8022和8024。只有在这种情况下,这些电路元件才不代表加热器导线的电阻和NTC传感器/转换器的电阻,而是包括由控制器检测的简单电阻器,以便识别无源管与系统的连接。如图24A-B所示,第一电路元件和第二电路元件8022和8024可以设置在包括连接的外壳中。第一电路元件和第二电路元件8022和8024可以直接连接到设置在适配器8020中的连接。在一个实例中,第一电路元件8022包括直接耦接到管的适配器中的两个连接的单个电阻器,第二电路元件8024包括直接耦接到管的适配器中的两个其他连接的单个电阻器。在一些实例中,适配器8020可以设置在管的外部和/或围绕管。在该实例中,第一电路元件和第二电路元件设置在管和/或管连接件的外表面上。适配器中的第一电路元件和第二电路元件允许湿化器中的感测电路确定连接到底座6050的管的类型。这与图35A中的实例不同,在图35A中,使用包括加热元件和/或传感器(例如,设置在管中)的电路的特性来确定连接到系统的类型。因此,在该实例中,需要选择无源管的第一电路元件和第二电路元件的值,使得其位于根据图35A中的有源管的第一电路元件和第二电路元件所预期的值的范围之外。如下面将讨论的,NTC元件的特定电特性(即电阻)必须在工作环境中进行考虑,在该工作环境中其可以分布在较宽的取值范围中。图37示出了100k热敏电阻(通常与19mm加热管一起使用)和10k热敏电阻(通常与15mm加热管一起使用)在不同温度下的管NTC电阻变化的示意图。100k热敏电阻和10k热敏电阻可以对应于可以包括在图35A所示的第二电路元件8024中的热敏电阻。本技术基于使用与适配器的NTC端子连接的电阻器,其明显不同于合法操作区域处的实际NTC电阻。如图37所示,在正常操作期间,10k和100k的NTC不使用在大约27Kohm和51K之间的区域,因此管中使用的电阻器(或如下所述的适配器)可以选择为36K或其附近。因此,当连接了其适配器的第二电路元件8024的电阻值为36k的管时,系统将获知该管不是使用10k热敏电阻的15mm管,也不是使用100k热敏电阻的19mm管。虽然这种非典型值电阻在上面被描述为指示使用了具有适配器的无源管,但是一个或多个电引脚的特定电阻可以用于指示与管-面罩系统中的管或甚至面罩相关联的各种其他参数。这样的参数可以包括在管/面罩中存在或不存在HME、附接到管的面罩的类型(鼻或全脸)等。为了减少错误检测的可能性(例如,在15mm加热管暴露于太阳并被加热到50℃,然后立即连接到底座的情况下),在适配器中使用第一电路元件8022,其通过预定值(例如,大约1Kohm)的电阻将加热器+和加热器+端子一起连接。1kohm电阻可传导最大24mA的电流(在100%PWM下),其仅耗散0.6W的功率,但足以供底座子系统电路可靠地测量。在适配器中使用如上所述的两个电路元件(例如电阻器)实际上在保持系统安全的同时消除了误检测所连接的管的可能性。使用电阻器实现了能够精确识别的低成本识别系统。可以提供与第一电路元件和/或第二电路元件并联和/或串联的其他电路元件(例如电阻器、电容器等),以提供与用于识别的其他电路的特性不同的特性。图38示出了根据本技术的另一种形式的底座和管连接的示意图。图38所示的实例类似于图36所示的实例,但是在适配器中仅使用单个电路元件(例如,36K电阻器)以降低适配器中的产品成本。在该实例中,除了减少电路元件的数量之外,还减少了适配器中的连接的数量。由于36K值的NTC和加热丝开路的组合也可以表示管中的双重故障(NTC导线上的NTC非贯穿裂纹+加热器导线上的开路)的情况,或通过ISO锥形机械连接的无源管的NTC端子被污染的情况,检测的可靠性可能稍微降低。图39示出了根据本技术的另一种形式的底座和管连接。在该实例中,设置于加热元件的PWM的一部分被“注入”到NTC检测电路中。微控制器通过舒适子系统NTC测量电路检测该信号。因为检测到的信号与上述其他管的所有标准操作模式明显不同,所以该实例可以呈现最佳的可检测性。然而,这种配置在某些实现方式中可能是不合需要的,因为它使用了在逻辑上不应将功能连接在一起的电路的两个不同部分(+24PWM加热和+3V3NTC检测)之间不合需要的功能交互。虽然已经参考四线系统描述了本技术的上述实例,但是这些实例不限于此。本技术的实例可以应用于具有其他数目的导线(例如,两根导线、三根导线或五根或更多根导线)的系统。而且,虽然上述实施例主要是关于检测附接到系统的管的类型(尺寸)来描述的,但是结合图35至39描述的电参数值的变化,不仅可以用于指示与管关联的各种参数(例如类型(加热/非加热)和尺寸(15mm或19mm)),而且可以用于指示与所使用的面罩关联的参数。例如,电参数的变化可以用于指示以下面罩参数中的一个或多个;附接到管的面罩类型(鼻或全脸)、面罩尺寸(小、中、大)、管或面罩中是否存在HME等。导线串扰如上所述,根据本技术的一个实例的空气输送管4170可以包括四根导线,例如两根导线用于加热元件和两根导线用于转换器(例如用作温度传感器的负温度系数(NTC)热敏电阻)。应当注意,NTC仅仅是本领域技术人员已知的多种不同类型的温度传感器中的一种。本技术的一个方面涉及减少或消除导线之间的串扰,例如,以提高NTC热敏电阻提供的信号传输的精度。图40示出了根据本技术的一种形式的管的示意图,其中四线电路与底座耦接。在四线电路中,电阻器9010和9012表示一个或多个加热元件的电阻,电阻器9020和9022表示耦接到传感器9030的导线的电阻。图40是示意性表示,并且示出了两组电阻器910和912不一定意味着存在两条或更多条加热器导线。在所讨论的加热管中,也可以使用单根连续加热丝或多于两根丝。例如,图40中所示的双线布置具有在底座与管之间形成的四个连接。PWM和GND连接与加热元件耦接,VH和VL与传感器9030耦接。图40中所示的电容元件C不是实际的电容器,而是表示位于紧密邻近处的两条导线之间(即,加热器导线9010与电阻器导线9020之间)的分布式寄生电容耦合。对于加热元件,通过连接PWM和GND提供电力,并且可以通过脉宽调制器(PWM)进行调节。PWM信号产生AC信号。PWM信号的某些设置(例如,脉冲频率)可能导致加热元件导线由于电磁(EM)而运动/振动(其可以是可听见的)。为了防止听到导线的运动,PWM信号的脉冲频率可以设置为预定值和/或高于预定值(例如,20Khz或高于20KHz)。传感器9030可以是设置在管4170中用于测量管4170中的热量的转换器(例如,负温度系数(NTC)热敏电阻)。如上所述,传感器9030可以具有不同的特性(例如,10K或100K的标称电阻值)以识别不同类型的管。在室温下,传感器9030的电阻值(例如,数十K欧姆)可以显著大于连接到传感器的导线的电阻(例如,5欧姆)。9030.如图42所示,向传感器9030提供电压Vsense。微控制器通过包括第一电阻器RHigh和第二电阻器RLow的分压网络提供电压。传感器9030与两个电阻器RLow和RHigh耦接,使得在其中一个导线发生故障时,系统可以检测到哪个导线发生故障。向分压器网络DC施加电压,用于检测传感器9030的操作参数和/或导线之一的故障。在VLow和VHigh端子处测量的电压的组合将向本领域的技术人员指示NTC导线是被另一NTC导线短路,还是被加热器导线短路,以及被具体被哪一条加热器导线短路。例如,被NTC导线短路的NTC导线,微控制器将测量到零电压差。另一方面,如果NTC导线与PWM加热器导线短路,则测得的电压差将大于Vsense(VsenseDC电压通常约为3.3V,而PWMAC电压约为24V)。在操作中,当PWM脉冲接通时,PWM导线电容性地连接(参见图40中的电容器C)传感器9030的导线。AC信号穿过寄生(固有)电容器进入传感器9030导线。图41示出了可以施加到加热元件的PWM信号(信号(A)或(B))和可以在感测电路中观察到的PWM感应信号的各部分(信号(C))的信号图。VH(Vhigh)和VL(Vlow)点处的信号被提供给微控制器,微控制器被配置为从V高减去V低。Vlow和Vhigh之间的差值表示传感器9030的电阻。微处理器被配置成跟踪由于管4170的温度变化而引起的传感器9030的电阻变化,并且确定系统的部件(例如,管4170中的加热元件)的操作设置。传感器9030的探测(例如,通过微处理器)可以以不与PWM信号同步的间隔来定时。在一些实例中,传感器9030的探测比PWM信号的周期慢。在一些情况下,探测周期可以是几秒。探测周期可以根据环境而改变。例如,在一些情况下,探测可以是恒定的,而在其他情况下,当探测到没有管连接到底座时,可以在一些时间周期使用数秒的探测,然而,一旦探测到有管连接到该装置,则可以使用更短的时间周期,或者甚至连续的监控。如上所述,用于探测传感器9030的信号被提供为DC信号。由于传感器9030的探测缓慢,感测电路可以捕获快速PWM感应信号的不同部分(参见图41的曲线图(c))。感应信号可以是传感器9030信号电压的10-20%。PWM信号的设置和PWM信号的变化可能影响基于传感器9030信号的电压的测量精度。在感测电路中引起的温度误差可以高达5度(在5至40度的测量范围内)。为了解决这些问题,根据本技术的一种形式,在NTC输出Vhigh点和Vlow点与地之间提供高通电滤波器,以去除包括传感器9030的电路中的信号的高频分量(PWM频率及以上的高频分量)。如图42所示,第一高通滤波器HPF1耦接到RHigh电阻和地,第二高通滤波器HPF2连接到Rlow电阻和地。可替代地或除上述之外,可以在NTC输出Vhigh点和Vlow点与微控制器之间提供低通电滤波器(例如LPF3和/或LPF4)。如图42所示,第一低通滤波器LPF1耦接到Rhigh电阻器和连接VH-Lpf,第二低通滤波器LPF2耦接到Rlow电阻器和连接VL-Lpf。每个滤波器可以形成为单个部件(即,电容器)或有源(即,运算放大器)和/或无源(电阻器/电容器)电子组件的组合。例如,当LPF1和LPF2中的每一个都使用大电容器(数十nF),即使不使用LPF3和/或LPF4,也在很大程度上减轻了加热管的导线与传感器之间的串扰。然而,如果使用较小的电容器(即数十nF)代替LPF1和LPF2,则这两个滤波器现在更适用于去除较大频率的外部干扰,但是不能有效地减轻串扰。这可以通过引入LPF3和LPF4来补偿,LPF3和LPF4可以被配置为对接近脉宽调制功率信号频率的频率和高于脉宽调制功率信号频率的频率进行滤波。可以接通和关闭传感器9030的电源(用于分压器)Vsense以检测管4170是否连接。当管4170未连接时,可以关闭传感器9030的电源。关闭电源可以减少连接中的腐蚀。根据本技术的一种形式,传感器9030的电源(用于分分压器)Vsense通常被关闭,但是周期性地接通和关闭以检测管4170是否连接。当检测到管4170未连接时,再次关闭传感器9030的电源。关闭电源可以减少连接可能在潮湿环境中工作的腐蚀。在短时间内,间歇地接通管,通过探测Vhigh和Vlow来检查管是否已经连接。如果Vhigh=Vsense且Vlow=0,则管没有连接。如果管已经连接,由于由RH和RL限定的分压器,Vhigh和Vlow改变为预定范围内的相应电压。当检测到管时,Vsense被永久接通,VH和VL用于测量温度。Vsense的接通和关闭可以控制为发生以大于间隔施加到加热元件的PWM信号的周期。在一个实例中,PWM信号的频率可以是20KHz(T=50μs),并且Vsense每1、2或3秒(1至0.333Hz)接通和关闭。如果使用非周期性的其他时间范围用于Vsense的间歇接通,以实现对加热管的连接进行探测,则它们可能具有相似的频率范围。因此,滤波器可以被配置为滤除串扰(20KHz),但保持1秒瞬变不发生开和关操作,以及传感器9030中的任何快速变化(例如,开窗口)。在一个实例中,滤波器可以被配置为滤除几Hz以上的所有内容。在其他实例中,滤波器可以对高于1到100Hz的频率范围中的任何一个所选频率的所有内容进行滤波。5.6.2.3水位指示器水贮存器6100可以包括水位指示器。在一些形式中,水位指示器可以为使用者(例如患者1000或护理者)提供一个或多个关于水贮存器中一定体积的水的量的指示。由水位指示器所提供的一个或多个指示可以包括水的最大预定体积以及其任何部分,例如25%、50%、75%或例如各种体积200ml、300ml或400ml的指示。在一个实例中,加热元件可以在内部悬挂在水贮存器6100内,例如,加热元件设置在水贮存器6100的腔室内以直接加热水而不是通过穿过水贮存器6100的传导性部分6150的热传递来加热水。在一个实例中,加热元件可以由贮存器盖6114竖直地悬挂。在上述实例中,加热元件可以被细分或分割成竖直分布的区域/部分。可以独立地控制每个区域/部分,以独立地接通/断开和控制每个区域/部分的温度,并且当不加热时(即,当水位下落并且加热器的上部不再与水接触时)停用。这可以导致能量的有效利用以仅加热与水接触的区域/部分。此外,每个区域/部分可以与相应的传感器相关联。多个传感器(例如NTC型传感器)在竖直方向上分布使得能够检测水位以向患者提供关于水贮存器中的水量的指示,例如,患者不必直接观察水贮存器中的水位。这种布置可以允许使用具有不透明侧壁(例如,不透明塑料或金属侧壁)的水贮存器,因为不需要通过水贮存器的侧壁直接观察水位。在一些情况下,加热元件可以包括具有印刷电阻轨道的PCB。这种布置使得易于划分轨道,从而限定不同的加热区域。竖直定向的分布式温度传感器或多个离散传感器可用于指示水平高度是否在水内。5.6.2.4湿化器转换器湿化器5000可以包括替代或除了上述转换器4270外的一个或多个湿化器转换器(传感器)5210。如图5G所示,湿化器转换器5210可以包括空气压力传感器5212、空气流量转换器5214、温度传感器5216或湿度传感器5218中的一者或多者。湿化器转换器5210可以产生一个或多个可以与控制器(例如中央控制器4230和/或湿化器控制器5250)通信的输出信号。在一些形式中,在将输出信号通信到控制器时,湿化器转换器可以被定位在湿化器5000的外部(例如在空气回路4170中)。5.6.2.4.1压力转换器替代或除了RPT装置4000中提供的压力传感器4272外,湿化器5000可以设置有一个或多个压力转换器5212。5.6.2.4.2流量转换器替代或除了RPT装置中提供的流量传感器4274外,湿化器5000可以设置有一个或多个流量转换器5214。5.6.2.4.3温度转换器湿化器5000可以包括一个或多个温度转换器5216。一个或多个温度转换器5216可以被配置为测量一个或多个温度,例如加热元件5240的和/或湿化器出口下游空气流的温度。在一些形式中,湿化器5000可以进一步包括用于检测环境空气温度的温度传感器5216。5.6.2.4.4湿度转换器在一些形式中,湿化器5000可以包括一个或多个检测气体(例如环境空气)湿度的湿度传感器5218。在一些形式中,湿度传感器5218可以放置成朝向湿化器出口,以测量从湿化器5000中输送的气体的湿度。湿度传感器可以是绝对湿度传感器或相对湿度传感器。5.6.2.5加热元件如图6B、20A和其他图所示,加热板6080用于将热量传递到水贮存器。在所示出的实例中,加热板可以形成贮存器底座6050的一部分,并且可以位于贮存器基部的基部上或附近。至少加热板的顶层包括硬的耐刮擦表面,其可以由例如镍铬合金、不锈钢或阳极氧化铝形成。加热板可以从加热元件传递热量。加热元件可以包括发热部件,例如电阻性电加热轨。加热元件的一个合适的实例是层状加热元件,例如在PCT专利申请公开第WO2012/171072号中所描述的层状加热元件,其以引用的方式整体并入本文。图34A至34C示出了根据本技术的一个实例的加热组件6075。在所示出的实例中,加热组件6075包括加热板6080,加热元件6085和布置在加热板6080与加热元件6085之间的导热垫6088(例如,热传导性橡胶或陶瓷垫)。加热组件6075可以进一步包括支撑结构6089,支撑结构6089被构造和布置成在贮存器底座6050的底部处支撑加热板/导热垫/加热元件。在所示出的实例中,支撑结构6089包括周边回弹支撑构件6096和基板6097,以将回弹支撑构件6096支撑在贮存器底座6050的底部。如图所示,除了回弹支撑构件6096(例如,由弹性体材料(例如,硅酮)构成)之外,还可以使用一个或多个支撑锥6098(例如,参见图34A和34C)或管(例如,参见图103和104)来有回弹性地支撑加热板/导热垫/加热元件。导热垫优选地由柔韧或柔顺的热传导性材料制成,并且布置在加热板6080与加热元件6085之间(例如,接合或粘附(例如,黏结)到加热板和加热元件两者)。在这种布置中,导热垫可以填充加热板6080与加热元件6085之间的气隙或空间,这增强了从加热元件6085到加热板6080的导热性。由于加热板6080和加热元件6085通常都包括由硬质材料制成的平坦表面,因此表面上的任何小缺陷都可能在这两个表面之间产生气隙。在这些表面之间具有柔性层有助于去除这种气隙并提高系统的热传导性。图81、98、100和103至109示出了根据本技术的另一实例的加热组件6075。在所示出的实例中,加热组件6075(例如,参见图103)包括加热板或耐磨板6080、加热元件或加热器6085,以及布置在加热板6080与加热元件6085之间的导热垫6088(例如,热传导性橡胶或陶瓷垫)(参见图103)。加热组件6075进一步包括支撑结构6089,支撑结构6089被构造和布置成在贮存器底座6050的底部处支撑加热板/导热垫/加热元件(参见图103)。支撑结构6089包括回弹密封和支撑构件9500以及基板9600,基板9600用于将回弹密封和支撑构件9500支撑在贮存器底座6050的底部处(参见图104)。如下所述,回弹密封和支撑构件9500(例如,由弹性体材料(例如,硅酮)构成)将加热板/导热垫/加热元件组件有回弹性地悬置在贮存器底座6050内,使得当水贮存器6100插入贮存器底座6050中时,加热板被回弹密封和支撑构件9500向上偏压抵靠水贮存器6100的传导性部分6150。该偏压使加热板6080和传导性部分6150保持彼此压靠以增强它们之间的热传导性。在所示出的实例中,基板9600(例如,由塑料或热塑性聚合物材料构成)包括连续的内部基部表面9610和从基部表面9610向上和向外(当集成的RPT装置和湿化器6000处于操作构造时可适用的方向)延伸的周边法兰9620。如图106中最佳示出的,周边法兰9620被配置和布置成向上延伸并且在基部壁8005上方延伸,基部壁8005在整合的RPT装置和湿化器6000的底部处形成开口,并且与贮存器底座6050的内壁6052(参见图106、108、109)形成可移除或不可移除的连接(例如,通过多个连接桩9622,参见图104)。在所示的实例中,基板9600的外部基部表面9612形成集成的RPT装置和湿化器6000的外部外表面(参见图106)。在一些实例中,回弹密封和支撑构件9500被搁置在平坦的基部表面9610上。在另一实例中(参见图104和106),可以在基板9600的基部表面9610上设置多个凸起的轨道9615,这些轨道9615被配置为在基板9600上对齐并且横向地支撑回弹密封和支撑构件9500的至少一个或多个回弹中空管9520。在下文中将更详细地描述回弹中空管9520。在一些情况下,轨道9615被配置为对齐并且横向地将整个回弹密封和支撑构件9500支撑在基板9600上。此外,如下面更详细地描述的,一个或多个排水孔或切口9625(例如,如图104所示的9个排水孔)沿着周边法兰9620的周边设置,以允许在使用期间排出可能聚集在基板9600中的水。回弹密封和支撑构件9500包括回弹周边唇缘9510和分布在由回弹周边唇缘9510界定的空间内的一个或多个回弹中空管9520(例如,中空圆柱体)。在所示出的实例中,周边唇缘9510和中空管9520包括(弹性体材料(例如,硅酮)的)一件式模制构造,例如,具有一个或多个中间连接件9530以将周边唇缘9510与中空管9520互连。此外,导线或电缆引导件9540可以设置于周边唇缘9510以容纳将加热器6085电连接到PCBA7600的一根或多根导线或电缆。当设置于基板9600时,周边唇缘9510被配置为在周边法兰9620的内侧上基本上向上(相对于该装置的操作构造)的方向上延伸(参见图106),其中在法兰的上部部分中可能有一些轻微向外的扩口。在一个实例中,周边唇缘9510可以与周边法兰9620同心地延伸(参见图103)。每个中空管9520包括由基部表面9610支撑的一个端部和被配置成当加热组件6075组装到贮存器底座6050(见图106)时接合加热器6085的相对的端部。回弹密封和支撑构件9500可以以能够移除的方式或永久地附接至基板9600的基部表面9610上,例如通过粘合剂、包覆成型等。在所示出的实例中,中空管9520各自包括大致竖直定向的轴线,即轴线大致垂直于底座6880的大致水平定向且平坦的基部表面6882。在所示出的实例中,回弹密封和支撑构件9500包括4个中空管9520,然而应当理解,可以提供更多或更少的中空管。在一个实例中,每个中空管9520可以包括约7-8mm的高度,约7mm的内径,以及约1mm的壁厚,然而取决于所使用的圆柱体的数目,其他合适的尺寸也是可能的。加热板或耐磨板6080(参见图81)被布置在设置于贮存器底座6050的底壁6053的开口内,这将加热板6080布置在底座空腔内以便在使用中与水贮存器6100的传导性部分6150接合。加热板6080(例如,由金属材料(例如,具有约0.15mm的均匀壁厚的不锈钢)构造(例如,冲压))包括基部6880和围绕基部6880的周边延伸的裙缘6885(参见图103和106)。基部6880包括形成外部或基部表面6882的第一侧,外部或基部表面6882适于在使用中接合水贮存器6100的传导性部分6150。基部6880的第二侧形成与导热垫6088接合的内表面6884(参见图106)。如图所示,基部6880包括大致平坦的形状,该形状配置为当集成的RPT装置和湿化器6000处于操作构造时大致水平地延伸。裙缘6885可以是水平的(基部6880的简单延伸),但优选地相对于基部6880大致向下倾斜或大致向外倾斜。因此,裙缘可以由从基部6880向下和向外延伸的单个部分形成。在所示出的实例中,裙缘6885包括相对于基部6880基本上竖直地延伸的竖直部分6885v,这导致水平部分6885h在基本上水平的平面中延伸到基部6880的水平部分(参见图103和106)。当装配到贮存器底座6050(移除了水贮存器6100)时,回弹密封和支撑构件9500有回弹性地支撑加热板6080(连同加热器6085和导热垫6088),使得基部6880突出穿过底壁6053中的开口,并且裙缘6885的水平部分6885h接合在底壁6053下方,这提供了硬止挡以将加热板6080保持在开口内(参见图106)。更具体地,如图106中最佳示出的,加热器6085和导热垫6088被布置在由基部6880和裙缘6885的竖直部分6885v形成的加热板6080的凹座内。加热器6085的一侧与周边唇缘9510的边界内的中空管9520接合,并且加热器6085的相对侧与接合基部6880的内表面6884的导热垫6088接合。代替所有中空管9520与加热器6085接合,一些或所有支撑构件(在此情况下为竖直中空管9520)可以直接与基座6880的内表面6884接合。此外,回弹密封和支撑构件9500的周边唇缘9510接合在加热板6080的裙缘6885的水平部分6885h的下方。由于这种构造,加热板6080以两种方式受到支撑,即,沿着其周边(水平部分6885h)由周边唇缘9510支撑,以及沿着其中央基部6880由中空管9520支撑。在一个实例中,导热垫6088可以仅包括一个粘性的侧面,例如,导热垫6088在一个侧面上包括粘附到加热器6085上的粘合剂,并且在相反的侧面上包括接合加热板6080的非粘性的粘合剂。也可以使用不粘的导热垫,因为中空管9520可以设计成施加保持导热垫6088内的部件之间热接触的连续压力。结果,导热垫/加热器可以在加热板6080的凹座内移动,然而,即使在移动时,加热板/导热垫/加热器仍将由中空管9520支撑。如上所述,导热垫6088被配置为填充加热板6080与加热元件6085之间的气隙或空间,这增强了从加热元件6085到加热板6080的导热性。回弹密封和支撑构件9500为加热板/导热垫/加热器提供了抵抗向下压力(对于中空管9520在轴向方向上)的类似弹簧的阻力,向下压力是在水贮存器6100被插入贮存器底座6050中时由水贮存器6100施加到加热板6080上的。这样的阻力向加热板6080提供恒定的向上弹簧偏压,从而当水贮存器处于其操作构造时,使得加热板6080和水贮存器6100的传导性部分6150之间能够获得良好的机械接触和热接触。这种良好的机械接触和热接触使装置更有效地工作。支撑加热板6080的竖直定向的中空管9520的具体构造确保了更加线性地回弹响应由插入的水贮存器6100施加到加热板6080的基部6880上的向下压力。这与实心结构的回弹支撑构件的情况相比是有利的,回弹支撑构件如果被压下超过一定限度,则可以对加热板6080的进一步偏转提供非常强的阻力。这种强阻力可能导致高摩擦并使得使用者难以插入水贮存器6100。图105和106示出了当水贮存器6100从贮存器底座6050移除时的加热组件6075,并且图107和108示出了当水贮存器6100插入贮存器底座6050中时的加热组件6075。如图所示,当水贮存器6100被插入贮存器底座6050中时,回弹密封和支撑构件9500被配置成使得当被压下时,回弹密封和支撑构件有回弹性地偏转(例如,周边唇缘9510沿其长度卷曲并且每个中空管9520的侧壁径向地向外弯曲),这提供向上的偏压力以将加热板6080向上偏压抵靠水贮存器6100的传导性部分6150。偏压力将加热板6080(通过导热垫6088)偏压到水贮存器6100的传导性部分6150。这导致加热板6080和传导性部分6150之间的机械接触和热接触改进,因此增强了整体加湿性能。如前文中所述,垂直定向的柔性中空管9520在压力(由插入的水贮存器施加)下弯曲的机理确保了更加线性的弹性响应,这可以实现水贮存器相对平滑的插入水贮存器底座。当将竖直尺寸处于尺寸公差上端的水贮存器插入到底座中时,这是特别有用的。即使在这种情况下,竖直施加到回弹构件上压力增加,由于加热板6080被竖直尺寸稍大的桶进一步向下偏转,弯曲管的相对线性的响应可以确保桶的插入阻力的增加相对较小。在一个实例中,由水贮存器6100的插入引起的加热板6080的正常位移约为1-2mm(即,当水贮存器6100被插入时,加热板6080从图105至106中的静止或停止位置被向下推动多少)。位移至少大于0mm,以确保加热板6080与水贮存器6100的传导性部分6150相干涉。在一个实例中,回弹密封和支撑构件9500可以包括当从贮存器底座6050移除水贮存器6100时的标称预负载。在一个实例中,预负载和/或位移可以通过底座6050的底壁6053的边缘高度或厚度来调节,底座6050的底壁6053止挡或结束加热板6080的行程。在一个实例中,如图104所示,在一个或多个管中,中空管9520中的每一个的顶部边缘(邻近加热器6085)可以包括一个或多个边缘切口9550,边缘切口9550形成多个放气孔口,以在中空管9520中的每一个被压下或偏转时(在水贮存器6100被插入贮存器底座6050中时)允许释放空气(从每个中空管的内部)。在一个替代性实例中,一个或多个中空管9520的壁可以包括一个或多个孔,以提供一个或多个放气孔口,用于在管处于压力下时释放空气。管壁中的边缘切口或开口的功能是确保压力平衡,以维持恒定的弹簧力功能。在加热板的下压过程中,例如在水贮存器的插入过程中,竖直管内的容积将被压缩,迫使空气移动到圆柱形之外。这使得有风险在任一个中空管内部形成真空。由于每个管基本上起到弹簧的作用,因此管中形成真空可以改变管施加到加热器的反作用力,因此改变施加到加湿贮存器的加热基部的反作用力。在一个或多个管(弹簧)中形成(可能)不同程度的真空,可导致各种响应压力施加到加热器表面上的不同点。这可能导致加热器和贮存器基部之间在跨越加热器/基部区域中热接触程度不同,可能导致加湿性能降低。在圆柱形的侧壁中包括切口或开口可以使中空管弹簧力的变化最小,从而导致更好的加湿性能。如图109所示,加热板6080和回弹密封和支撑构件9500被布置成使得溢出到贮存器底座6050的空腔内的水被密封在周边唇缘9510之外并且防止到达周边唇缘9510的内侧上的加热器6085所在的空间。此外,溢出的水可以沿着基板9600的周边通过排水孔9625(参见图104)泄漏并且释放到下面的支撑表面(例如床边桌)上。即,参见图107至109,周边唇缘9510有回弹性地接合在裙缘6885的水平部分6885h的下方并沿着加热板6080的周边形成密封。当来自加热器贮存器6100的水溢出到贮存器底座6050的空腔内时,它将穿过加热板6080与底座6050的底壁6053之间的小间隙6890并进入形成在周边唇缘9510与底板9600的周边法兰9620之间的贮存器6891中(参见图109)。然后,如此截留在水贮存器6891中的水可以沿着周边法兰9620的周边流过排水孔9625,并流过底壁8005和底板9600之间的小间隙6892,以允许排水到下面的支撑表面上(参见图109)。应该注意的是,以上描述中对水平、竖直、向下和向上方向的任何引用都意味着适用于集成的RPT装置和湿化器6000的操作配置。5.6.2.6湿化器控制器根据本技术的一种布置方式,如图5G中所示,湿化器5000可以包括湿化器控制器5250。在一种形式中,湿化器控制器5250可以是中央控制器4230的一部分。在另一种形式中,湿化器控制器5250可以是独立的控制器,其可以与中央控制器4230通信。在一种形式中,湿化器控制器5250可以接收,例如贮存器5110和/或湿化器5000中空气流、水流的性质(例如温度、湿度、压力和/或流量)的测量值作为输入。湿化器控制器5250还可以被配置为执行或实施湿化器算法和/或输送一个或多个输出信号。如图5G中所示,湿化器控制器5250可以包括一个或多个控制器,例如中央湿化器控制器5251、被配置为控制加热空气回路4171的温度的加热空气回路控制器5254和/或被配置为控制加热元件5240的温度的加热元件控制器5252。5.7呼吸波形图4示出了人睡眠时的模型典型呼吸波形。水平轴是时间,垂直轴是呼吸流量。虽然参数值可以变化,但是典型的呼吸可以具有以下近似值:潮气量Vt,0.5L,吸气时间Ti,1.6s,峰值吸气流量Q峰值,0.4L/s,呼气时间Te,2.4s,峰值呼气流量Q峰值,-0.5L/s。呼吸的总持续时间T总约为4s。人通常以约15次呼吸/分钟(BPM)的速率呼吸,通气量Vent,约7.5L/分钟。典型的占空比,Ti与T总之比约为40%。5.8术语表为了实现本技术公开内容的目的,在本技术的某些形式中可应用下列定义中的一个或多个。本技术的其他形式中,可应用另选的定义。5.8.1通则空气:在本技术的某些形式中,空气可以被认为意指大气空气,并且在本技术的其他形式中,空气可以被认为是指可呼吸气体的一些其他组合,例如富含氧气的大气空气。环境:在本技术的某些形式中,术语环境可具有以下含义(i)治疗系统或患者的外部,和(ii)直接围绕治疗系统或患者。例如,相对于湿化器的环境湿度可以是直接围绕湿化器的空气的湿度,例如患者睡觉的房间内的湿度。这种环境湿度可以与患者睡觉的房间外部的湿度不同。在另一实例中,环境压力可以是直接围绕身体或在身体外部的压力。在某些形式中,环境(例如,声学)噪声可以被认为是除了例如由RPT装置产生或从面罩或患者接口产生的噪声外的患者所处的房间中的背景噪声水平。环境噪声可以由房间外的声源产生。自动气道正压通气(APAP)治疗:其中治疗压力在最小限度和最大限度之间是可自动调整的CPAP治疗,例如随每次呼吸而不同,这取决于是否存在SBD事件的指示。持续气道正压通气(CPAP)治疗:其中在患者的呼吸周期的整个过程中治疗压力可以是近似恒定的呼吸压力治疗。在一些形式中,气道入口处的压力在呼气期间将略微更高,并且在吸气期间略微更低。在一些形式中,压力将在患者的不同呼吸周期之间变化,例如,响应于检测到部分上气道阻塞的指示而增大,以及缺乏部分上气道阻塞的指示而减小。流量:每单位时间输送的空气体积(或质量)。流量可以指瞬时量。在一些情况下,对流量的提及将是对标量的提及,即仅具有量值的量。在其他情况下,对流量的提及将是对向量的提及,即具有量值和方向两者的量。流量可以符号Q给出。‘流量’有时简单地缩写成‘流’或‘空气流’。在患者呼吸的实例中,流量对于患者的呼吸周期的吸气部分而言可以在标称上是正的,并且因此对于患者的呼吸周期的呼气部分而言是负的。总流量Qt是离开RPT装置的空气的流量。通气流量Qv是离开通气口以允许冲洗呼出气体的空气流量。泄漏流量Ql是从患者接口系统或其他地方泄漏的流量。呼吸流量Qr是被接收到患者的呼吸系统中的空气流量。湿化器:湿化器该词将被理解为一种湿化设备,其被构造和布置成、或配置有一种物理结构,能够为空气流提供治疗有益量的水(H2O)蒸汽,以改善患者的医疗呼吸病症。泄漏:泄漏该词将被认为是非期望的空气流量。在一个实例中,可由于面罩与患者面部之间的不完全密封而发生泄漏。在另一实例中,泄漏可发生在通向周围环境的旋轴弯管中。噪声,传导的(声学的):本文件中的传导噪声是指通过气动路径(例如空气回路和患者接口以及其中的空气)带给患者的噪声。在一种形式中,传导噪声可以通过测量空气回路端部处的声压水平来进行量化。噪声,辐射的(声学的):本文件中的辐射噪声是指通过周围空气带给患者的噪声。在一种形式中,辐射噪声可以通过根据ISO3744测量所讨论的物体的声功率/声压水平来进行量化。噪声,通气的(声学的):本文件中的通气噪声是指由通过穿过任何通气口(例如患者接口的通气口)的空气流动所产生的噪声。患者:人,不论他们是否患有呼吸病症。压力:每单位面积的力。压力可以用一系列单位来表达,包括cmH2O、g-f/cm2、百帕斯卡。1cmH2O等于1g-f/cm2且约为0.98百帕斯卡。在本说明书中,除非另有说明,否则压力以cmH2O为单位给出。患者接口中的压力以符号Pm给出,而治疗压力以符号Pt给出,该治疗压力表示在当前时刻通过面罩压力Pm所获得的目标值。呼吸压力治疗(RPT):以典型相对于大气为正的治疗压力向气道入口施加空气供给。呼吸机:向患者提供压力支持以执行一些或全部呼吸工作的机械装置。5.8.1.1材料硅酮或硅酮弹性体:一种合成橡胶。在本说明书中,对硅酮的提及是指液体硅酮橡胶(LSR)或压模硅酮橡胶(CMSR)。可商购的LSR的一种形式是SILASTIC(包括在此商标下出售的产品范围中),其由道康宁公司(DowCorning)制造。LSR的另一制造商是瓦克集团(Wacker)。除非另有相反的规定,否则LSR的示例性形式具有如使用ASTMD2240所测量的约35至约45范围内的肖氏A(或类型A)压痕硬度。聚碳酸酯:双酚A碳酸酯的热塑性聚合物。5.8.1.2机械性质回弹性:材料在弹性变形时吸收能量并在卸载时释放能量的能力。有回弹力的:当放空时将基本上释放所有的能量。包括例如某些硅酮和热塑性弹性体。硬度:材料本身抵抗变形的能力(例如由杨氏模量或在标准化样品尺寸上测量的凹痕硬度标度所描述)。‘软’材料可以包括硅酮或热塑性弹性体(TPE),并且可以例如在指压下容易变形。‘硬’材料可以包括聚碳酸酯、聚丙烯、钢或铝,并且可以不容易例如在手指压力下变形。结构或部件的刚度(或刚性):结构或部件抵抗响应于所施加的负载的变形的能力。负荷可以是力或力矩,例如压缩、拉伸、弯曲或扭转。结构或部件在不同方向上可以提供不同的抗力。‘松软’结构或部件:当使其支撑自身重量时将在相对短的时间段(比如1秒)内改变形状(例如弯曲)的结构或部件。‘刚性’结构或部件:当经受在使用中通常遇到的负荷时基本上将不改变形状的结构或部件。这种使用的实例可以是例如在大约20至30cmH2O的压力下,设置和保持患者接口与患者气道的入口成密封关系。作为一个实例,I形梁可以在第一方向中与第二个正交方向相比包括不同的弯曲刚度(对弯曲负载的抗力)。在另一实例中,结构或部件可以在第一方向上是松软的而在第二方向上是刚性的。5.8.2呼吸周期呼吸暂停:根据一些定义,当流量降到低于预定阈值达持续一段时间(例如10秒)时认为发生呼吸暂停。当即使患者努力,气道的一些阻塞也不允许空气流动时,认为发生阻塞性呼吸暂停。当尽管气道是开放(patent)的,但是由于呼吸努力的减少或不存在呼吸努力而检测到呼吸暂停时,认为发生中枢性呼吸暂停。当呼吸努力减少或不存在呼吸努力与气道阻塞同时发生时,认为发生混合性呼吸暂停。呼吸速率:患者的自发呼吸的速率,其通常以每分钟呼吸次数来测量。占空比:吸气时间Ti与总呼吸时间T总的比值。努力(呼吸):自发呼吸者尝试呼吸所做的工作。呼吸周期的呼气部分:从呼气流量开始到吸气流量开始的时间段。流量限制:流量限制将被认为是患者呼吸中的事件状态,其中患者的努力增加不会导致流量的相应增加。在呼吸周期的吸气部分期间发生流量限制的情况下,可以将其描述为吸气流量限制。在呼吸周期的呼气部分期间发生流量限制的情况下,可以将其描述为呼气流量限制。流量限制的吸气波形的类型:(i)平坦化的:具有一个上升,后跟一个相对平坦的部分,然后是下降。(ii)M形:具有两个局部峰,一个在前沿处,一个在后沿处,并且两个峰之间具有相对平坦的部分。(iii)椅形:具有单一的局部峰,峰处于前沿处,然后是相对平坦的部分。(iv)反向椅形:具有相对平坦的部分,然后是单个局部峰,峰位于后沿处。呼吸不足:根据一些定义,呼吸不足将被认为是流量的减少,而不是流量的停止。在一种形式中,当流量降低到阈值以下持续存在一段时间时,可以认为发生呼吸不足。当由于呼吸努力的减少而检测到呼吸不足时,认为发生中枢性呼吸不足。在成年人的一种形式中,以下的任一种均可以看做是呼吸不足:(i)患者呼吸减少30%持续至少10秒加相关的4%去饱和;或者(ii)患者呼吸减少(但小于50%)持续至少10秒,伴随相关的至少3%的去饱和或觉醒。呼吸过度:流量增大到高于正常的水平。呼吸周期的吸气部分:从吸气流量开始到呼气流量开始的时间段被认为是呼吸周期的吸气部分。开放性(气道):气道被打开的程度或气道是打开的程度。开放的气道是打开的。气道开放性可以被定量,例如值(1)为开放的,并且用值零(0)为封闭的(阻塞的)。呼气末正压通气(PEEP):存在于呼气末的肺中的高于大气压的压力。峰值流量(Q峰值):呼吸流量波形的吸气部分期间的流量的最大值。呼吸流量、患者空气流量、呼吸空气流量(Qr):这些同义词术语可被理解成指RPT装置对呼吸流量的估算,与“真实呼吸流量”或“真实呼吸流量”相对,其是由患者所经历的实际呼吸流量,通常以升/每分钟表示。潮气量(Vt):当不施加额外的努力时,在正常呼吸期间吸入或呼出的空气体积。原则上,吸气体积Vi(吸入空气的体积)等于呼气体积Ve(呼出空气的体积),因此单个潮气量Vt可以被定义为等于任一量。实际上,潮气量Vt被估计为吸气量Vi和呼气量Ve的某种组合,例如平均值。(吸气)时间(Ti):呼吸流量波形的吸气部分的持续时间。(呼气)时间(Te):呼吸流量波形的呼气部分的持续时间。(总)时间(T总):一个呼吸流量波形的吸气部分的开始与随后的呼吸流量波形的吸气部分的开始之间的总持续时间。典型的近期通气量:在一些预定时间量程内通气量Vent近期值围绕其趋于集群的通气值,也就是通气量近期值的集中趋势的量度。上气道阻塞(UAO):包括部分和全部上气道阻塞。这可能与流量限制的状态相关联,其中随着上气道上的压力差增加,流量仅稍微增加,或者甚至降低(Starling阻抗行为)。通气量(Vent):由患者的呼吸系统所交换的气体速率的量度。通气量的量度可以包括吸气和呼气流量(每单位时间)中的一者或两者。当表达为每分钟的体积时,此量通常被称为“每分钟通气量”。每分钟通气量有时简单地作为体积给出,并理解成是每分钟的体积。5.8.3通气量自适应伺服呼吸机(ASV):具有可变的而不是固定的目标通气量的伺服呼吸机。可以根据患者的一些特征(例如患者的呼吸特征)中获知可变的目标通气量。备用速率:呼吸机的参数,其确定呼吸机将输送至患者的最小呼吸速率(通常以每分钟呼吸次数计),如果不是由自发呼吸努力触发的话。循环的:呼吸机的吸气阶段的终止。当呼吸机向自发呼吸的患者输送呼吸时,在呼吸周期的吸气部分的末期处,认为呼吸机循环以停止输送呼吸。呼气气道正压力(EPAP):将呼吸内变化的压力加到其中以产生呼吸机在给定时间将尝试实现的期望面罩压力的基础压力。呼气末压力(EEP):呼吸机在呼气部分的末期时尝试实现的期望面罩压力。如果压力波形模板Π(Φ)在呼气的末期时为零值,即Π(Φ)=0,当Φ=1时,则EEP等于EPAP。吸气气道正压力(IPAP):呼吸机在呼吸的吸气部分期间尝试实现的最大期望面罩压力。压力支持:指示呼吸机吸气期间压力增加超过呼吸机呼气期间的压力的数字,并且通常意指吸气期间的最大值与基础压力之间的压力差(例如,PS=IPAP-EPAP)。在一些情况下,压力支持意指呼吸机旨在实现的差异,而不是实际实现的差异。伺服呼吸机:测量患者通气量的呼吸机,其具有目标通气量并调整压力支持的水平以使患者通气量达到目标通气量。自发的/定时的(S/T):呼吸机或其他装置的模式,其试图检测自发呼吸患者的呼吸的开始。然而,如果装置在预定的时间段内不能检测到呼吸,则装置将自动启动呼吸的输送。摆动:与压力支持等同的术语。触发的:当呼吸机将呼吸的空气输送至自发呼吸的患者时,认为通过患者的努力在呼吸周期的呼吸部分开始时被触发。5.8.4患者接口反窒息阀(AAV):面罩系统的部件或子组件,其通过以故障安全方式向大气开放,降低了患者过度的CO2再呼吸的风险。弯管:弯管是引导穿过其中的空气流的轴线经一定角度改变方向的结构的一个实例。在一种形式中,该角度可以是大约90度。在另一种形式中,该角度可以大于或小于90度。弯管可以具有近似圆形的横截面。在另一形式中,弯管可以具有椭圆形或矩形的横截面。在某些形式中,弯管可以相对于配合部件旋转,例如,约360度。在某些形式中,弯管可以从配合部件上移除,例如,通过卡扣连接。在某些形式中,弯管可以在制造期间通过一次性卡扣组装到配合部件,但是不能由患者移除。框架:框架将被认为意指承载两个或两个以上与头带的连接点之间的张力负载的面罩结构。面罩框架可以是面罩中的非气密的负荷承载结构。然而,一些形式的面罩框架也可以是气密的。头带:头带将被理解为意指为一种形式的设计成在头部上使用的定位和稳定结构。例如,头带可以包括一个或多个支撑物、系带和加强件的集合,其构造成将患者接口定位并保持在患者面部上用于输送呼吸治疗的位置。一些系带由柔软的、柔性的、有弹性的材料,诸如泡沫和织物的层压复合材料形成。膜:膜将被理解为意指典型地薄的元件,其优选地基本上不具有抗弯曲性,但是具有抗拉伸性。充气室:面罩充气室将被认为意指患者接口的具有至少部分包围一定体积空间的壁的部分,该体积在使用时具有在其中增压至超过大气压力的空气。壳体可以形成面罩充气室的壁的一部分。密封:可以是名词形式(“密封”),其指的是一种结构,或动词形式(“密封”),其指的是效果。两个元件可以被构造和/或布置成‘密封’或在其间实现“密封”,而不需要单独的“密封”元件本身。壳体:壳体将被理解为意指具有可弯曲、可伸展和可压缩刚度的弯曲且相对较薄的结构。例如,面罩的弯曲结构壁可以是壳体。在一些形式中,壳体可以是多面的。在一些形式中,壳体可以是气密性的。在一些形式中,壳体可以不是气密性的。加强件:加强件将被认为意指设计成在至少一个方向上增加另一个部件的抗弯曲性的结构性部件。支撑物:支撑物将被认为是设计成在至少一个方向上增加另一个部件的抗压缩性的结构性部件。旋轴:(名词)被配置为围绕共同轴旋转的部件的子部件,优选地独立地,优选地在低扭矩下。在一种形式中,旋轴可以被构造成经过至少360度的角度旋转。在另一种形式中,旋轴可以经构造成经过小于360度的角度旋转。当在空气输送导管的情况下使用时,部件的子组件优选地包括一对匹配的圆柱形导管。在使用时可以很少或没有从旋轴中泄漏的空气流。系带(名词):一种用于抵抗张力的结构。通气口(名词):允许空气流从面罩或导管内部流到环境空气以用于临床上有效地冲洗呼出气体的结构。例如,临床上有效地冲洗可以包括约10升/分钟至约100升/分钟的流量,这取决于面罩设计和治疗压力。5.8.5结构的形状根据本技术的产品可以包括一个或多个三维机械结构,例如面罩垫子或叶轮。三维结构可以通过二维表面结合。这些表面可以使用标记来区分以描述相关表面取向、位置、功能或一些其他特征。例如,结构可以包括前表面、后表面、内表面以及外表面中的一个或多个。在另一个实例中,密封形成结构可以包括接触面部的(例如,外部)表面和单独的不接触面部(例如,下侧或内部)表面。在另一个实例中,结构可以包括第一表面和第二表面。为了有助于描述三维结构和表面的形状,首先考虑通过结构表面的一点p的横截面,参见图3B至图3F,它们显示了在表面上p点处的横截面以及所得到的平面曲线实例。图3B至3F还示出了p处的外向法向量。在p点处的向外法线向量远离表面。在一些实例中,从直立在表面上的假想小人的视点描述了该表面。5.8.5.1一维中的曲率平面曲线在p处的曲率可以被描述为具有符号(例如,正、负)和量值(例如,1/仅在p处接触该曲线的圆的半径)。正曲率:如果曲线在p处转向向外法线,则在该点处的曲率将取为正(如果假想小人离开点p,则他们必须向上坡走)。参见图3B(与图3C相比相对大的正曲率)和图3C(与图3B相比相对小的正曲率)。此类曲线通常被称为凹面。零曲率:如果曲线在p处是直线,则曲率将取为零(如果假象小人离开点p,则他们可以水平行走,既不向上也不向下)。参见图3D。负曲率:如果曲线在p处转向背离向外法线,则在该点处的该方向上的曲率将取为负(如果假象小人离开点p,则他们必须向下坡走)。参见图3E(与图3F相比相对小的负曲率)和图3F(与图3E相比相对大的负曲率)。此类曲线通常被称为凸面。5.8.5.2二维表面的曲率在根据本技术的二维表面上的给定点处的形状的描述可以包括多个法向横截面。多个横截面可以切割包括向外法线的平面(“法向平面”)中的表面,并且每个横截面可以在不同方向中截取。每个横截面产生具有对应曲率的平面曲线。在该点处的不同曲率可以具有相同的符号或不同的符号。在该点处的每个曲率具有量值,例如相对较小的量值。在图3B至图3F中的平面曲线可以是在特定点处的此类多个横截面的实例。主曲率和主方向:曲线的曲率取其最大值和最小值的法向平面的方向被称为主方向。在图3B至图3F的实例中,最大曲率出现在图3B中,并且最小值出现在图3F中,因此图3B和图3F是主方向上的横截面。在p处的主曲率是在主方向上的曲率。表面的区域:在表面上的点的连通集。在区域中的点的集合可以具有类似的特征,例如曲率或符号。鞍状区域:每个点处的主曲率具有相反的符号,即一个符号是正、另一个符号是负(取决于假想人所转向的方向,他们可以向上坡走或向下坡走)的区域。圆顶区域:每个点处的主曲率具有相同的符号,例如两个正(“凹形圆顶”)或两个负(“凸形圆顶”)的区域。圆柱形区域:其中一个主曲率是零(或者例如在制造公差内是零)、另一个主曲率不是零的区域。平面区域:两个主曲率均是零(或者例如在制造公差内是零)的表面区域。表面的边缘:表面或区域的边界或界限。路径:在本技术的某些形式中,‘路径’将被认为意指数学-拓扑学意义上的路径,例如在表面上从f(0)至f(1)的连续空间曲线。在本技术的某些形式中,‘路径’可以被描述为路由或路线,包括例如表面上的一个点集。(假想人的路径是他们在表面上行走之处并且类似于花园路径)。路径长度:在本技术的某些形式中,‘路径长度’将被认为是沿着表面从f(0)至f(1)的距离,即在表面上沿着路径的距离。在表面上的两个点之间可以存在超过一个路径并且此类路径可以具有不同的路径长度。(假想人的路径长度将是他们在表面上沿着路径行走的距离)。直线距离:直线距离是表面上两个点之间的距离,但是不考虑表面。在平面区域中,在表面上可以存在具有与表面上的两个点之间的直线距离相同的路径长度的路径。在非平面表面中,可能不存在路径长度与两个点之间的直线距离相同的路径。(对于假想人,直线距离将对应于‘沿直线’的距离。)5.8.5.3空间曲线空间曲线:与平面曲线不同,空间曲线不必位于任何特定的平面中。空间曲线可以是闭合的,即没有端点。空间曲线可以被认为是三维空间的一维块。行走在DNA螺旋链上的假想人沿着空间曲线行走。典型的人类左耳包括螺旋,其为左手螺旋,参见图3Q。典型的人类右耳包括螺旋,其为右手螺旋,参见图3R。结构的边缘,例如膜或叶轮的边缘可以遵循空间曲线。总体上,空间曲线可以通过空间曲线上的每个点处的曲率和扭转进行描述。扭转是曲线如何转离平面的量度。扭转具有符号和量值。空间曲线上的一点处的扭转可以参考该点处的切向量、法向量和副法向量来表征。切单位向量(或单位切向量):对于曲线上的每个点,该点处的向量指示从该点开始的方向以及量值。切单位向量是在该点处与曲线指向相同方向的单位向量。如果假想人沿着曲线飞行并且在特定点处从她的载具上掉下来,则切向量的方向是她将要行进的方向。单位法向量:当假想人沿着曲线移动时,该切向量自身发生改变。指向与切向量正在变化的方向相同的方向的单位向量被称为单位主法向量。它垂直于切向量。副法单位向量:副法单位向量垂直于切向量和主法向量。其方向可以通过右手定则或者可选地通过左手定则来确定。密切平面:包含单位切向量和单位主法向量的平面。空间曲线的扭转:空间曲线的一点处的扭转是该点处的副法向量的变化率的量值。它度量了曲线偏离密切平面的程度。位于平面上的空间曲线具有零扭转。偏离密切平面相对较少量的空间曲线将具有相对较小的扭转量值(例如,平缓倾斜的螺旋路径)。偏离密切平面相对较大量的空间曲线将具有相对较大的扭转量值(例如,急剧倾斜的螺旋路径)。参考右手定则,朝向右手副法线方向转向的空间曲线可以被认为具有右手正扭转。背离右手副法线方向转向的空间曲线可以被认为具有右手负扭转(例如,左手螺旋)。同样地,并参考左手定则,朝向左手副法线方向转向的空间曲线可以被认为具有左手正扭转(例如,左手螺旋)。因此,左手正等效于右手负。5.8.5.4孔表面可以具有一维孔,例如通过平面曲线或通过空间曲线界定的孔。具有孔的薄结构(例如,膜)可以被描述为具有一维孔。例如,参见图3G中所示的结构的表面中的一维孔,其由平面曲线界定。结构可以具有二维孔,例如由表面界定的孔。例如,可充气轮胎具有由轮胎的内表面界定的二维孔。在另一个实例中,具有用于空气或凝胶的腔的囊状物可以具有二维孔。在又一实例中,导管可以包括一维孔(例如,在其入口处或在其出口处)和由导管内表面界定的二维孔。还参见图3I所示的穿过该结构的二维孔,其由所示表面界定。5.9其他备注除非上下文中明确说明并且提供数值范围的情况下,否则应当理解,在该范围的上限与下限之间的每个中间值,到下限单位的十分之一,以及在所述范围内的任何其他所述值或中间值均广泛地包含在本技术内。这些中间范围的上限和下限可独立地包括在中间范围内,也包括在本技术范围内,但受制于所述范围内的任何明确排除的界限。在所述范围包括所述极限值中的一个或两个的情况下,本技术中还包括排除那些所包括的极限值中的任一个或两个的范围。此外,在本文所述的一个值或多个值作为本技术的部分的一部分进行实施的情况下,应理解的是,此类值可以是近似的,除非另外说明,并且此类值可以实用的技术实施可允许或需要其的程度用于任何适当的有效数位。除非另外定义,否则本文所使用的所有技术和科学术语均具有与本技术所属领域的普通技术人员通常所理解的相同的含义。尽管类似于或等效于本文所描述的那些的任何方法和材料也可以用于本技术的实践或测试,但是本文描述了有限数量的代表性方法和材料。当特定材料被鉴定用于构造部件时,具有类似特性的明显替代材料作为其替代物。此外,除非相反规定,否则本文所述的任何和全部部件均被理解为能够被制造且因而可以一起或分开制造。必须指出,除非上下文明确地另外规定,否则如本文和所附权利要求所使用,单数形式“一个”、“一种”和“所述”包括其复数等同物。本文提及的全部出版物均以引用的形式整体并入本文,以公开并且描述作为那些出版物的主题的方法和/或材料。提供本文中讨论的公布仅仅是针对它们在本申请的提交日期之前的公开。本文中的任何内容均不应被理解为承认由于先前发明而使本技术无权享有这些公布的优先权。此外,所提供的出版日期可不同于实际出版日期,其可能需要单独证实。术语“包括(comprises)”和“包括(comprising)”应被理解为:是指各元件、各部件或非排他方式的各步骤,指出可能存在或被利用的所标记的元件、部件或步骤,或者与没有标记的其他元件、部件或步骤的组合。在详细描述中使用的主题标题仅为了方便读者参考,不应用来限制可在本公开或权利要求书全文中找到的主题。主题标题不应用来解释权利要求书的范围或权利要求的限制。虽然在本文中已经参照了具体实施例来描述本技术,但应了解,这些实施例仅说明本技术的原理和应用。在一些情况下,术语和符号可以暗含实践本技术所不需要的具体细节。例如,尽管可以使用术语“第一”和“第二”,但是除非另有规定,否则它们并非旨在指示任何顺序,而是可以用来区分不同元件。此外,尽管可以一定顺序来描述或说明方法中的过程步骤,但是此顺序是不需要的。本领域技术人员将认识到,此顺序可以被修改,和/或顺序的其方面可以同时或甚至同步进行。因此应当了解可对所述示例性实施例进行大量的调整,并且应当了解可在不脱离本技术的精神和范围的情况下设计其他布置。5.10参考符号列表当前第1页12