专利名称:甲烷转化成乙烯用催化剂及其制备以及用所述催化剂生产乙烯的方法
技术领域:
本发明涉及甲烷转化成乙烯用负载型催化剂及其制备,以及用所述的催化剂生产乙烯的方法。更具体地说,本发明涉及以下通式(1)表示的转化反应用新型催化剂及其制备,以及在上述催化剂存在下通过甲烷或含甲烷的气体直接转化来生产乙烯的方法。
Ma·Pc·D/S(1)其中,M为选自第VIII、VII和VI族的金属簇团或金属络合化合物;S为无机载体如SiO2;P为三价磷化合物助催化剂;D为钴化合物如CoCl2。“a”为金属簇团或金属络合化合物在催化剂中的重量百分数,其值为0.01~10%;“c”为助催化剂在催化剂中的重量百分数,其值为1.0~35.0%。
背景技术:
通常,乙烯已在石油化学工业和精细化学工业中广泛用作基本反应化学品。甲烷通过在相当高的温度(约1500~1550℃)下经热裂解或电裂解反应过程进行脱氢来合成乙烯是大家熟悉的。
但是,这一方法有一些问题,如热能大量损失和需要高温设备,特别是由于高温,反应器的腐蚀严重。
作为描述通过氧化偶联和脱氢由甲烷直接转化来制备有双键的低碳烃类如乙烯的烃类合成的先有技术,有美国专利5066629、5068486、5118654,加拿大专利2016675和日本专利04352730、04368342。
由于反应在相对低的温度(约700~800℃)下进行,上述这些方法或多或少克服了上述一些缺点。但是,因为反应使用氧、氦、氮和N2O作为氧化气体或烯释气体,结果生成各种反应产物和生成大量副产物如CO2。而且,分离或纯化反应物很困难,更不用说不可能进行连续操作和造成严重的环境污染问题了。
另一方面,天然气除含有甲烷作为主要成分外还含有各种杂质,如CO2、H2S和H2S。因为这些杂质可能影响催化活性,如果不纯化它们,反应不能很好地进行。
发明综述所以为了克服与上述这些方法有关的缺点,本发明的一个目的是提供一种用连续工艺高产率制备乙烯的方法,该法在相对较低的温度下,在催化剂存在下进行,不生成副产物如CO2。本发明的另一目的是提供一种将含有一些杂质的甲烷如天然气直接连续转化成乙烯的方法。本发明的另一目的是提供一种用于所述方法的新型催化剂及其制备。
为了达到所述的目的,本发明人进行了广泛的研究,并发现可通过以下方法制得该转化催化剂通过甲烷或含甲烷的气体在所述通式(1)表示的催化剂存在下,在350~1050℃下的直接转化操作,可得到高产率的乙烯,不生成副产物如CO2。同样,通过将溶剂加到所述通式(1)的组分中、在约20至200℃下回流中悬浮搅拌、在减压下蒸馏蒸发残液并在真空干燥器中干燥等操作,可制得所述的催化剂。
换句话说,将本发明转化用催化剂用于将甲烷或含甲烷的气体转化成乙烯,该催化剂用通式(1)来表征。制造本发明转化用催化剂的方法用以下操作表征,其中将所述通式(1)的各组分加入溶剂中,在约20至200℃下回流中悬浮、搅拌、在减压下蒸馏蒸发残液并在真空干燥器中干燥。本发明生产乙烯的方法其特征是,甲烷或含甲烷的气体在350~1050℃、1~10大气压下,在所述的催化剂存在下直接转化成乙烯。
本发明的详细描述本发明将更详细地描述如下本发明的催化剂用所述的通式(1)表示。在所述的式(1)中,M为金属簇团或金属络合化合物,如第VIII族中的Fe、Ru、Os、Co、Rh、Ir、Ni、Pd、Pt,第VII族中的Mn、Re和第VI族中的Mo、Wo例如,金属化合物有RuCl2(PPh3)3、RuCl2(CO)2(PPh3)2、Ru3(CO)12、RuCl(co)(PPh3)2、IrCl(CO)(PPh3)2、Pd(PPh3)4、Pt(PPh3)4、RuCl3xH2O、RhCl3H2O、IrCl3·xH2O、H2PtCl6·xH2O和PdCl2。其中最优选的金属化合物是Ru和Rh系列化合物。
S为无机载体,如α-Al2O3、γ-Al2O3、SiO2、SiO2-Al2O3、Y型沸石、ZSM-S沸石、MgO和TiO2。其中最优选的化合物是α-Al2O3和MgO。P为三价磷化合物助催化剂,如PPh3、P(OCH3)3、P(OC2H5)3和P(O)(OC2H5)3。D为钴化合物,如CoCl2·xH2O、Co(NO3)2·xH2O和Co(CH3COO)2·xH2O。
在甲烷含有一些杂质的情况下,使用钴化合物来阻止催化活性下降,同时也阻止产率下降,甚至在没有稀释气体如N2的情况下。其优化用量优选在0.3%(重)以下。如果超过这一范围,催化剂之间的键合干扰出现,因此可能使催化活性下降。
“a”是催化剂中金属簇团或金属络合化合物的重量百分数,其值为0.01~10%。“c”为催化剂中助催化剂的重量百分数,其值为1.0~35.0%。如果“a”超过上述数值,它就可能使产率下降;如果“c”超过上述数值,反应器的进口或出口可能堵塞。
本发明转化用催化剂可由如下步骤制得(i)在20~200℃下将所述的M、P、D和S加到溶剂如二氯甲烷或丙酮中。
(ii)通过回流进行混合和悬浮。
(iii)通过减压蒸馏进行干燥。
根据本发明在所述的催化剂存在下甲烷或含甲烷的气体直接转化成乙烯的反应条件如下—反应温度为350~1050℃,优选650~950℃。
—反应压力为1~10大气压,优选1~5大气压,更优选常压。
—催化剂浓度为5%(重)以下,优选1.0~3.0%(重)。
—原料气空速为150~12000毫升/小时,优选600~4800毫升/小时。
经本发明上述方法,甲烷生成乙烯的转化率为约15至20%,它低于以氧化偶联和脱氢反应为基础的上述生产乙烯的方法的转化率,后者为50~60%。
但是,在本发明中,因为可有效地进行连续转化反应又不生成副产物如CO2,因此进一步提高了生产率。
甚至在转化的甲烷含有一些杂质的情况下,本发明中催化活性都不受影响。因此在不纯化的情况下将天然气直接转化成乙烯有很大的好处。
通常,CO2在天然气中的平均重量百分数为0~5%。在使用本发明转化用催化剂的情况下,在CO2含量为0.2~1.0%范围内可得到稳定的甲烷转化率(8.2~10.1%)。通常,H2S在天然气中的重量百分数为1%以下。在使用本发明转化用催化剂的情况下,即使H2S为1%也可得到约14%的稳定的甲烷转化率。
此外,天然气中还可含有少量水分。在使用本发明转化用催化剂的情况下,即使有水存在也能得到8~12%的稳定转化率。换句话说,如果使用本发明的催化剂,不管存在哪种杂质,都可得到大于10%的稳定的转化率。通过反应器还未转化的甲烷还可不经纯化就用于转化反应。
实施例本发明的实施例如下,转化率、产率和选择性的定义规定如下。
*转化率(%(摩尔))=(反应的甲烷摩尔数/进料甲烷的摩尔数)×100*产率(%(摩尔))=(生成的低碳烃摩尔数/进料甲烷的摩尔数)×100*选择性(%(摩尔))=(生成的低碳烃摩尔数/反应的甲烷摩尔数)×100制备实施例1Ru系列催化剂的制备将5.16克α-Al2O3、1.00克(1.04毫摩尔)RuCl2(PPH3)3、1.09克(4.16毫摩尔)PPh3和0.01克CoCl2.xH2O加到含有20毫升二氯甲烷和10毫升丙酮的混合溶剂中,并在约40至60℃下搅拌约30分钟。
通过减压蒸馏将用上述方法得到的悬浮液蒸发,然后在真空干燥器中干燥约20小时,制得RuCl2(PPH3)3·PPh3/α-Al2O3(Ru 2%(重))催化剂。
制备实施例2含水的Ru系列催化剂的制备将制备实施例1中制备的1.0克RuCl2(PPh3)3·PPh3/α-Al2O3(重))催化剂在n分钟内加到2毫升蒸馏水中,然后在真空干燥器中干燥20小时,制得含水的RuCl2(PPh3)3·PPh3·H2O/α-Al2O3(Ru 2%(重))催化剂。
制备实施例3Ir系列催化剂的制备该催化剂以制备实施例1相同的方法制备,不同的是用0.78克IrCl(CO)(PPh3)2代替1.00克RuCl2(PPh3)3。
制备实施例4Rh系列催化剂的制备该催化剂以制备实施例1相同的方法制备,不同的是用0.69克RhCl(CO)(PPh3)2代替1.00克RuCl2(PPh3)3。
制备实施例5Pd系列催化剂的制备该催化剂以制备实施例1相同的方法制备,不同的是用1.16克Pd(PPh3)4代替1.00克RuCl2(PPh3)3。
制备实施例6Pt系列催化剂的制备该催化剂以制备实施例1相同的方法制备,不同的是用1.24克Pt(PPh3)4代替1.00克RuCl2(PPh3)3。
实施例1将没有稀释气的甲烷以600~2400毫升/小时的流速送入装有制备实施例1制备的催化剂的固定床连续流动反应器(内径0.70厘米,长40厘米,材料为不锈钢316)。
用气相色谱法分析在1大气压、810℃下连续反应得到的产物,催化活性列入下表1。
表1不同空速下催化活性的比较
实施例2
为了确定使用稀释气体和不用稀释气体的差别以及作为杂质含在天然气中的CO2对催化活性的影响,反应以实施例1中相同的方式进行,进料气含有甲烷、氮和二氧化碳,装有制备实施例1制得的催化剂。结果列入下表2。
表2在含氮和二氧化碳的情况下转化率的比较<
>实施例3如下表3所示,测定了含在天然气中的水对催化活性的影响。在制备实施例2中制得的催化剂存在下,以实施例1相同的方式进行反应。
表3水对催化活性的影响
实施例4为了确定含在天然气中的硫化合物对催化活性的影响,在制备实施例1中制得的催化剂存在下,以实施例1相同的方式进行反应。结果列入下表4。
表4硫对催化活性的影响
实施例5如下表5所示,测定了制备实施例3~7中制得的催化剂对催化活性的影响,在空速1200毫升/小时下,以实施例1相同的方式进行反应。
表5不同催化剂的催化活性比较
权利要求
1.一种用以下通式(1)表示的甲烷转化成乙烯用催化剂Ma·Pc·D/S(1)其中,M为选自第VIII、VII、和VI族的金属簇团或金属络合化合物;S为无机载体;P为三价磷化合物助催化剂;D为钴化合物。“a”为催化剂中金属簇团或金属络合化合物的重量百分数,其值为0.01~10%,“c”为催化剂中助催化剂的重量百分数,其值为1.0~35.0%。
2.根据权利要求1的转化用催化剂,其中M选自RuCl2(PPh3)3、RuCl2(CO)2(PPh3)2、Ru(CO)12、RuCl(CO)(PPh3)2、IrCl(CO)(PPh3)2、Pd(PPh3)4、Pt(PPh3)4、RuCl3.xH2O、RhCl3·xH2O、IrCl3·xH2O、H2PtCl6.xH2O和PdCl2中的一个或多个。
3.根据权利要求1的转化用催化剂,其中S选自α-A2O3、γ-Al2O3、SiO2、SiO2-Al2O3、Y型沸石、ZSM-S沸石、MgO和TiO2中的一个或多个。
4.根据权利要求1的转化用催化剂,其中D选自CoCl2·xH2O、Co(NO3)2·xH2O和Co(CH3COO)2·xH2O中的一个或多个。
5.根据权利要求1的转化用催化剂,其中D的重量百分数范围在0.3%(重)以下。
6.一种制备权利要求1转化用催化剂的方法,该法包括以下步骤(i)在20~200℃下将所述通式(1)中的M、P、D和S加到溶剂中。(ii)通过回流进行混合和悬浮。(iii)通过减压蒸馏进行干燥。
7.一种由甲烷制备乙烯的方法,通过甲烷在350~1050℃、1~10大气压下,在权利要求1的转化用催化剂存在下直接转化。
8.根据权利要求7的制备乙烯的方法,其中转化用催化剂的浓度为5%(重)以下。
9.根据权利要求7的制备乙烯的方法,其中制备乙烯不使用稀释气体。
10.根据权利要求7的制备乙烯的方法,其中进料气体如甲烷或含甲烷的气体的空速范围为150~12000毫升/小时。
全文摘要
本发明涉及甲烷转化成乙烯用新型催化剂及其制备,以及用所述的催化剂生产乙烯的方法。在本发明中,在上述有以下通式(1)的催化剂存在下,该转化反应催化剂用于使甲烷或含甲烷的气体直接转化Ma·Pc·D/S(1)其中,M为选自第VIII、VII和VI族的金属簇团或金属络合化合物;S为无机载体;P为三价磷化合物的助催化剂;D为钴化合物。“a”为催化剂中金属簇团或金属络合物,其值为0.01~10%,“c”为催化剂中的助催化剂的重量百分数,其值1.0~35.0%。
文档编号C07B61/00GK1120320SQ94191636
公开日1996年4月10日 申请日期1994年12月30日 优先权日1993年12月31日
发明者朴大喆, 安柄权 申请人:财团法人韩国化学研究所