一种pc预应力钢丝用钢及其生产工艺
技术领域
1.本发明涉及钢铁冶金技术领域,尤其涉及一种pc预应力钢丝用钢swrh72bh+cr及其生产工艺。
背景技术:2.预应力钢丝、钢绞线用热轧盘条是生产高强度低松弛预应力混凝土结构用钢丝和钢绞线的主要原料,其终端产品pc钢丝和钢绞线广泛应用于高层建筑、桥梁、石油化工、铁路等重点工程。是高速线材产品中高端、高附加值的品牌钢种之一。
3.申请号:200710119609.0的专专利文件公开了一种微合金化高强度盘条钢,其特征在于:该钢种由c:0.77%~0.85%,si:0.15%~0.35%,mn:0.70%~0.90%,p:≤0.025%,s:≤0.025%,cr:0.16%~0.25%,v:0~0.08%,cu:≤0.001%,ni:≤0.001%,ti:≤0.001%,其余为铁含量。该发明是在钢中加入了合计元素cr、v,用于确保盘条强度和金相组织索氏体化率,其生产成本高。
4.申请号:202010061888.5的专利文件公开了一种高淬透性高强度低温韧性弹簧钢及其生产方法,该钢种由c:0.54%~0.64%,si:1.40%~2.00%,mn:0.40%~0.80%,p:≤0.025%,s:≤0.020%,cr:1.00%~1.50%,ni:0.10%~0.40%,mo:0.10%~0.40%,,al:0.015%~0.080%,,cu:≤0.25%,其余为铁含量。该发明生产方法包括转炉冶炼、lf精炼、vd真空脱气、连铸、加热、轧制工序,其生产工艺路线除了lf精炼还需要vd真空脱气冶炼,工艺复杂,生产成本高。
技术实现要素:5.本发明的目的在于提供一种pc预应力钢丝用钢及其生产工艺,在保证pc预应力钢丝用钢swrh72bh+cr盘条钢的强度和韧性的同时达到节约成本的目的。
6.为了达到上述目的,本发明采用以下技术方案实现:
7.一种pc预应力钢丝用钢,钢中化学成分按重量百分比计为:c 0.73%~0.75%、si 0.20%~0.27%、mn 0.74%~0.80%、p≤0.017%、s≤0.015%、cr 0.32%~0.35%、ni≤0.20%、cu≤0.20%,其余为铁和不可避免的杂质。
8.所述pc预应力钢丝用钢其抗拉强度为1157~1222mpa,伸长率为11.5%~16.5%,断面收缩率为32%~42%,非金属夹杂物a+c≤1.5、b+d≤1.5。
9.所述pc预应力钢丝用钢其金相组织索氏体化率达到1.5级以上,脱碳层≤0.10mm。
10.本发明成分设计理由如下:
11.c是钢中的固溶强化主要元素,随着c含量增加会恶化塑韧性。为满足的强度需要,并具有良好塑韧性,所以c含量0.73~0.75%。
12.si是铁素体固溶强化元素,同时在炼钢过程中起脱氧作用,si含量过高时固溶强化效果达到饱和,钢的组织产生石漠化和脱碳程度增加,钢坯加热易使奥氏体经晶粒长大,形成组织也较粗大,有恶化塑韧性倾向,故si含量控制0.20%~0.27%。
13.mn有固溶强化和细晶强化作用,并推迟珠光体和铁素体转变,同时提高淬透性的有效合金元素,为使盘条具有较好的淬透性和适宜的强度,规定mn控制范围为0.74%~0.80%。
14.cr可以显著提高钢的淬透性,从而减小珠光体片层间距,细化组织。提高索氏体化率。综合考虑强度、组织控制等因素,确定cr的成分范围为0.33%~0.35%.
15.p、s为有害元素,控制其含量以提高其纯净度,因此要求其达到较低的水平。其中p≤0.017%,s≤0.015%。
16.一种pc预应力钢丝用钢的生产工艺,工艺步骤包括转炉冶炼、lf炉精炼、小方坯连铸、钢坯缓冷、加热、轧制、控冷、保温通道缓冷,具体包括:
17.1)lf炉精炼:lf精炼时间60min~80min,lf炉离站温度1635℃~1645℃;
18.lf精炼炉内采用微正压操作,降低处理钢中吸入氮;采用白渣。
19.2)连铸:平台温度1595
±
5℃,中包温度1545℃~1570℃,过热度保持在20℃~30℃,拉速2.0m/min~2.3m/min;全过程保护浇铸,结晶器保护渣使用高碳钢保护渣;铸坯切割采用自动加人工相结合的方式。
20.采用小方坯连铸,结晶器电磁搅拌+末端电磁搅拌,结晶器电磁搅拌电流300a,频率5hz,正反转;末端电磁搅拌电流300a,频率8hz,连续;恒拉速控制。
21.3)加热工艺:步进式加热炉加热,预热段880
±
20℃,加热段1100
±
20℃,均热段1140
±
20℃,加热时间≤2.5h。
22.4)轧制工艺:开轧温度:1000~1030℃;精轧入口温度:920
±
20℃;吐丝温度:880
±
20℃;
23.低温开轧1000~1030℃,全程保温,保证低温区控制轧制,实现未再结晶的有效轧制控制。
24.5)风冷辊道速度:头部辊道0.6-0.8m/s;辊道增速设定3%~5%。
25.所述的转炉冶炼:氧气顶底复吹,出钢温度1680~1700℃,出钢终点c为0.47%~0.68%,p≤0.010%,严禁下渣,出钢1/4~1/3时加入石灰、预脱氧剂及合金进行脱氧合金化,吹氩时间≥5min;
26.钢包静吹氩时间≥8min,处理前温度1640℃~1650℃,处理后温度1610℃~1620℃,静吹氩后喂复氮合金包芯线1kg~1.2kg/t
·
钢,喂线速度3~3.2m/s。
27.转炉冶炼废钢占7%~12%,铁水占88%~93%。
28.所述的lf炉精炼采用白渣操作,在保证渣流动性的条件下,控制渣碱度和渣中的氧势(r4.2~10.6;feo<1%);辅料加入量为:活性石灰5.3~6.7kg/t
·
钢,萤石75~85kg/炉,电石渣20~30kg/炉,碳化稻壳0.50~0.65kg/t
·
钢,并对钢水时时检测,进行微调合金,保证钢水成分达到标准要求,精炼后软吹氩,软吹时间≥12min,喂钙线80m~100m/炉。
29.本发明克服了“lf精炼+vd真空脱气”的生产方法,设计只走“lf精炼”的生产流程,并且只添加cr一种合金元素,通过严格控制冶炼工艺工程,提高铸坯性能,并结合低温开轧全程保温控温轧制,有效的保证了盘条的强度和韧性,同时又达到了节约成本目的。
30.本发明采用控制冷却:吐丝温度880
±
20℃;风冷辊道速度:头部辊道0.6-0.8m/s;辊道增速设定3%~5%。增加首段辊道速度,增加盘卷圈间距;调整风机佳灵装置角度,使风量均匀分布;冷却模式采用低温吐丝后,前期开启风机快速冷却至相变前期,相变区关闭
风机加盖保温罩实现缓慢冷却,延长相变过程时间,使组织充分转变成合理的珠光体组织(索氏体)比例,第三冷却区间采用空气冷却并配有少量风量实现均匀冷却,从而为实现盘条性能需求及小通条性能差提供保证。
31.保温通道的有效利用,保证组织应力及内应力的有效释放,以此亦保证了产品的性能和通条性能差的要求。
32.与现有技术相比,本发明的有益效果是:
33.1)本发明控制连铸中间包过热度控制在20℃~30℃,避免钢坯内部有较大级别的中心疏松或缩孔缺陷。
34.2)利用连铸结晶器电磁搅拌和末端电磁搅拌,避免碳含量中心偏析。
35.3)通过轧钢斯太尔摩控轧控冷工艺,结合强制冷却工艺,获得由索氏体、珠光体和铁素体组成金相组织等。
36.4)本发明的swrh72bh+cr盘条组织均匀,晶粒度≥8.0级,索氏体化率达到1.5级。无影响后期拉拔加工的马氏体、网状渗碳体组织。盘条一边总脱碳层(铁素体+过渡层)深度≤1.5d%(d为盘条公称直径)。
附图说明
37.图1是本发明的金相组织图。
具体实施方式
38.下面结合实施例对本发明的具体实施方式作进一步说明。
39.实施例:
40.实施例1-8化学成分见表1;实施例1-8冶炼及轧制工艺见表2;实施例1-8铸坯低倍缺陷检验结构见表3;实施例1-8产品性能检验结果见表4。
41.表1各实施例钢的化学成分(wt%)
42.元素csimncrpsnicu例10.750.20.790.330.0160.0130.190.17例20.740.210.80.340.0150.0130.180.10例30.740.230.780.320.0140.010.170.12例40.730.20.80.330.0150.010.020.05例50.730.230.80.330.0160.0120.030.19例60.740.220.80.320.0160.0140.100.06例70.720.240.790.330.010.0150.120.08例80.730.210.80.330.0160.01300
43.表2实施例冶炼及轧制工艺
[0044][0045]
表3铸坯低倍缺陷检验结构
[0046][0047]
表4产品性能检验结果
[0048][0049][0050]
现有技术生产的pc预应力钢丝用钢swrh72bh+cr,铸坯经常出现高级的中心疏松或缩孔缺陷,轧制过程未焊合形成盘条芯部缩孔最终导致拉拔断裂;铸坯出现严重的碳中心偏析,轧制过程在快速冷却下形成强度高、塑性差的芯部马氏体导致拉拔断裂。