首页 > 化学装置 专利正文
一种BCN/Fe的制作方法

时间:2022-02-03 阅读: 作者:专利查询

一种BCN/Fe的制作方法
一种bcn/fe
x
oy@cf/c复合结构吸波材料的制备工艺
技术领域
1.本发明涉及一种bcn/fe
x
oy@cf/c复合结构吸波材料的制备工艺,属于电磁吸波材料技术领域。


背景技术:

2.近年来,随着第五代移动通信技术(5th generation mobile communication technology简称5g)的发展,实现高速率、低时延通信,是实现人机物互联的网络基础设施。但是电磁波对人类、设备、环境带来了不小的影响,因此在材料的制备过程中不应该单单只考虑结构承载功能,还要兼顾吸波性能。
3.cf/c复合材料是以碳纤维为增强体,以碳或石墨为基体,能够承受极高的温度和加热速度,因此经常被认为是超高温度的烧蚀材料。在承受载荷时候具有诸如纤维拔出、纤维桥连、裂纹扩展受阻、相变增韧、微裂纹增韧等多种断裂损耗机理,因此防止了脆性断裂,提高材料的断裂强度。cf/c复合材料虽然具有优良的高温性能和力学性能,但是高温抗氧化性能较差并且致密化较困难。


技术实现要素:

4.本发明针对现有技术存在的不足,提供一种bcn/fe
x
oy@cf/c复合结构吸波材料的制备工艺,所述bcn/fe
x
oy@cf/c复合结构吸波材料具有高温吸波和力学承载一体化性能,具有优异的稀薄性能和力学性能。
5.本发明解决上述技术问题的技术方案如下:一种bcn/fe
x
oy@cf/c复合结构吸波材料的制备工艺,包括如下步骤:
6.1)将cf纤维浸渍在硝酸铁(fe(no3)3)溶液中,完成第一次浸渍操作后,将cf纤维干燥;
7.2)将步骤1)浸渍后的cf纤维,继续浸润在硼酸(h3bo3)、尿素(co(nh2)2)和三聚氰胺(c3h6n6)混合溶液中,完成第二次浸渍,干燥得到bcn/fe
x
oy@cf预制体单丝纤维;
8.3)将步骤2)得到的单丝纤维压实成预制体形状,然后使用针刺机经过反复针刺,将部分水平纤维通过勾刺的作用拉到垂直方向,这些被勾刺呈垂直方向的纤维和水平方向的纤维相互缠结、约束,形成一定强度和紧实结构的预制体;
9.4)采用真空浸渍机,用石墨烯、沥青、正己烷混合的有机溶剂对步骤3)制备的预制体进行真空浸渍,然后抽真空得到浸渍后的试样;
10.5)将浸渍后的试样进行固化,得到固化后的试样;
11.6)将固化后的试样进行裂解,得到吸波材料;
12.7)重复上述步骤4)~步骤6)多次,直到吸波材料增重小于1%,得到所述的bcn/fe
x
oy@cf/c复合结构吸波材料产品。
13.在上述技术方案的基础上,本发明还可以做如下改进:
14.进一步的,步骤1)的具体操作为:将硝酸铁溶解在去离子水中,制备浓度为10%的
硝酸铁溶液,将cf纤维(cf单丝)浸渍在硝酸铁溶液中,浸渍10h完成第一次浸渍操作,然后将cf纤维放入到干燥箱中,在80℃下干燥24h。
15.进一步的,步骤2)的具体操作为:将步骤1)浸渍后的cf纤维,继续浸润在硼酸、尿素和三聚氰胺混合水溶液中,浸渍1h,放入到干燥箱中,在80℃下干燥24h,得到bcn/fe
x
oy@cf预制体。
16.优选的,所述硼酸、尿素和三聚氰胺在混合水溶液中的浓度分别为15%、20%、15%。
17.进一步的,步骤4)的具体操作为:采用真空浸渍机,用石墨烯、沥青、正己烷混合的有机溶剂对步骤3)制备的预制体进行真空浸渍,抽真空0.5-1h,真空压力为5-20pa,得到浸渍后的试样。
18.优选的,所述石墨烯、沥青、正己烷混合的有机溶剂中,按照重量份数计,所述石墨烯35-40份,所述沥青30-35份,所述正己烷30-35份。
19.进一步的,步骤5)的具体操作为:将浸渍后的试样进行固化,固化在恒温干燥箱中进行,固化温度150℃,固化时间4h,得到固化后的试样。
20.进一步的,步骤6)的具体操作为:将固化后的试样在氩气作为保护气体的真空烧结炉1200℃裂解。
21.本发明的有益效果是:
22.采用碳纤维浸润bcn/fe
x
oy改善cf/c复合材料的高温抗氧化性能,采用pip工艺,经过多次浸软裂解,解决cf/c复合材料致密化困难的问题;此外,bcn具有较低的密度和高温稳定能,以及优异的介电性能和介电性能可调控性,是制备高温轻质吸波材料的理想材料,并且fe
x
oy可以改善低频吸波性能和调节阻抗匹配的作用。因此bcn/fe
x
oy可以改善cf/c复合材料的高温吸波性能。
23.本发明将cf/c复合材料的宏观结构与bcn/fe
x
oy粉体的微观结构相结合,bcn/fe
x
oy粉体改善碳纤维表面的阻抗匹配问题,提高吸波材料的抗氧化问题,cf/c复合材料起到结构承载作用,将两者结合后制备的bcn/fe
x
oy@cf/c复合结构吸波材料具有高温吸波和力学承载一体化性能,具有优异的稀薄性能和力学性能,是一种可用于高温结构吸波一体化的bcn/fe
x
oy@cf/c复合结构吸波材料。
附图说明
24.图1为实施例中所述bcn/fe
x
oy@cf/c复合结构吸波材料的制备工艺流程图;
25.图2为实施例中所述bcn/fe
x
oy@cf/c复合结构吸波材料的力学性能:(a)层间剪切;(b)拉伸;(c)弯曲垂直;(d)弯曲平行;(e)压缩垂直;(f)压缩平行;图中1-6数字为若干个重复试样在相同条件下的测试结果。
26.图3为实施例中所述bcn/fe
x
oy@cf/c复合结构吸波材料在不同厚度处的吸波性能。
具体实施方式
27.为使本发明的上述目的、特征和优点能够更加明显易懂,下面对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发
明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
28.除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。
29.如图1所示,一种bcn/fe
x
oy@cf/c复合结构吸波材料的制备工艺,包括如下步骤:
30.1)将硝酸铁溶解在去离子水中,制备浓度为10%的硝酸铁溶液,将cf纤维浸渍在硝酸铁溶液中,浸渍10h完成第一次浸渍操作,然后将cf纤维放入到干燥箱中,在80℃下干燥24h;
31.2)将步骤1)浸渍后的cf纤维,继续浸润在硼酸、尿素和三聚氰胺混合溶液中,浸渍1h,放入到干燥箱中,在80℃下干燥24h,得到bcn/fe
x
oy@cf预制体的单丝纤维;所述硼酸、尿素和三聚氰胺在混合水溶液中的浓度分别为15%、20%、15%;
32.3)将步骤2)得到的单丝纤维压实成预制体形状,然后使用针刺机经过反复针刺,将部分水平纤维通过勾刺的作用拉到垂直方向,这些被勾刺呈垂直方向的纤维和水平方向的纤维相互缠结、约束,形成一定强度和紧实结构的预制体;
33.4)采用真空浸渍机,用石墨烯、沥青、正己烷混合的有机溶剂对步骤3)制备的预制体进行真空浸渍,抽真空0.5-1h,真空压力为5-20pa,得到浸渍后的试样;按照重量份数计,所述石墨烯35-40份,所述沥青30-35份,所述正己烷30-35份。
34.5)将浸渍后的试样进行固化,固化在恒温干燥箱中进行,固化温度150℃,固化时间4h,得到固化后的试样;
35.6)将固化后的试样在氩气作为保护气体的真空烧结炉1200℃裂解,得到吸波材料;
36.7)重复上述步骤4)~步骤6)多次,直到吸波材料增重小于1%,得到所述的bcn/fe
x
oy@cf/c复合结构吸波材料产品。
37.从图2的数据可以看出:有效数据层间剪切断裂强度、拉伸断裂强度、弯曲垂直断裂强度均大于60mpa、弯曲平行断裂强度大于70mpa、压缩垂直断裂强度大于270mpa、排除误差曲线压缩平行断裂强度在60mpa左右,显示出良好的力学性能。
38.图3中曲线分别为不同厚度试样对应的吸波性能,从图3的数据可以看出:有效吸收带宽为2.7-10.5ghz和13,5-18ghz,总有效吸收带宽大于12.5ghz,最低反射损耗为27.5db。在4-8ghz范围内,反射损耗能达到-20db,吸收99%的电磁波,具有优异的吸波性能。
39.本实施例将cf/c复合材料的宏观结构与bcn/fe
x
oy粉体的微观结构相结合,bcn/fe
x
oy粉体改善碳纤维表面的阻抗匹配问题,提高吸波材料的抗氧化问题,cf/c复合材料起到结构承载作用,将两者结合后制备的bcn/fe
x
oy@cf/c复合结构吸波材料具有高温吸波和力学承载一体化性能,具有优异的稀薄性能和力学性能。
40.以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
41.以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来
说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。