首页 > 化学装置 专利正文
由连续陶瓷细丝制造功能分级结构的方法与流程

时间:2022-02-18 阅读: 作者:专利查询

由连续陶瓷细丝制造功能分级结构的方法与流程

本发明是一种通过缠绕连续陶瓷细丝来构造多个陶瓷层以制备射频(RF)透明结构的方法。

背景技术

高超音速导弹中的先进雷达系统影响传统天线罩技术中使用的材料和生产技术。需要通过雷达有效且更快地检测多个目标,同时承受高温、热机械负荷和恶劣环境因素,这对高端导弹天线罩的开发提出了挑战。

纤维增强陶瓷基质复合材料(FR-CMC)是解决上述大多数问题的一个有前景的解决方案。这些复合材料通过使用陶瓷细丝诸如纤维制备2D(机织、纬编、编织、经编)或3D(3D机织、3D间隔)织物来制造[1,2],然后通过陶瓷悬浮液来浸渍。根据具体应用,陶瓷纤维可以是氧化物或非氧化物[3-5]。

开发导弹天线罩的陶瓷基质复合材料(CMC)技术在过去的几十年里已经获得了显著的进步。美国专利号5,738,750描述了开发多层天线罩层的方法,其中蜂窝结构在两侧覆盖有石英布堆,该石英布由被二氧化硅树脂(35重量%)渗透的二氧化硅纤维(65重量%)组成。无机树脂是聚硅氧烷或聚硅氮烷,其在热解后分别转化为二氧化硅或氮化硅。然而,没有明确提及如何通过接合这些层来形成天线罩形状的清晰描述。

在美国专利号7,118,802中,公开了以超过6马赫飞行的导弹的天线罩的要求。所提出的结构由一个胶体浸渍FR-CMC的负荷承载层和一个隔热层组成。胶体是具有40-50重量%固体负荷(氧化铝或二氧化硅)的陶瓷悬浮液,而隔热层是泡沫材料,其45%的开孔填充有陶瓷颗粒。这些层用耐高温粘合剂粘合。类似于先前提到的专利,该文献也缺少如何通过使用这些单独的层来使天线罩成形的清晰描述。

宽带HARM反辐射导弹的构造如参考文件[7]所示。根据该模型,3mm厚的低介电蜂窝结构夹在较薄的高介电层之间。类似于公开文献中公开的信息,没有关于如何构造宽带天线罩的解释。

陶瓷宽带导弹天线罩的制造对材料和生产技术的选择提出了若干限制。尽管用于超音速/高超音速导弹天线罩的材料几十年来众所周知,但采用高端技术来开发以高马赫数飞行的宽带天线罩相对较新。因此,关于陶瓷宽带天线罩的制造的信息有限,陶瓷宽带天线罩最可能是通过功能分级或通过满足宽带特性的夹层结构来制备的。

以前的努力主要集中于使窄/单频带下操作的较大和单层的陶瓷天线罩成形。模塑与工具加工结合(美国专利号2002/0163109)、汽缸的冷等静压和机械加工(美国专利号9,673,518、4,615,859和4,615,933)、粉浆浇注[8]、粉浆浇注后化学气相沉积(CVD)(美国专利号4,358,772)、增材制造(美国专利号2009/0096687)是文献中提到的一些技术。

基于上述信息,阻碍陶瓷宽带天线罩制造进展的因素可以总结如下:

·陶瓷材料的易碎性质使其难以成形和烧结成没有缺陷的较大的工件。

·多层结构的各个陶瓷层之间的CTE(热膨胀系数)不匹配,从而导致烧制过程中出现微裂纹和分层。

·由于沿孔隙链的结构破裂,难以通过孔隙率对介电常数进行分级。



技术实现要素:

本发明是一种通过缠绕连续陶瓷细丝来构造多个陶瓷层以制备射频(RF)透明结构的方法。每一层的介电性质的特征在于细丝间的间距和细丝数。一旦构造了多个层,就将该结构从缠绕表面(例如心轴)移除,在单独的设置中用树脂渗透并烧制。

如本发明所述,通过陶瓷纤维网络制造陶瓷宽带导弹天线罩具有以下与众不同的特征:

·本质上易碎的陶瓷材料以可弯曲且柔性的连续陶瓷细丝在心轴上成形。

·细丝可以选自纤维、纤维束和织物。

·细丝(从现在开始称为纤维)可以选自一系列氧化物或非氧化物陶瓷诸如SiO2、Al2O3、SiC或它们的混合组合物。

·纤维可以来自纯陶瓷、添加了有机载体的陶瓷或PDC(聚合物衍生陶瓷)来源,在脱粘和烧制后转化为纯陶瓷。

·有机和合成性质的纤维(棉、芳纶、Kevlar、聚丙烯腈和类似物)也可以用作在烧制时在结构中形成孔隙(低介电区)的牺牲层。

·纤维可以在x、y和z方向上缠绕、卷绕或编织在诸如心轴的支撑体上(从现在开始该方法称为编织)。

·通过根据图案编织具有特定介电常数的连续陶瓷纤维形成结构的每一层。模具上的缠绕角度、纤维之间的孔径(层孔隙率)和缠绕数(层厚度)是图案的限定参数,因此也是层的介电特征。换言之,介电层不一定由材料本身限定,而是由纤维网络设计限定。材料选择和层排列的这种灵活性增强了RF设计能力。

·通过对整个厚度进行孔隙率分级的介电常数分级由陶瓷纤维网络的密度决定;主要由纤维间孔径决定。介电常数较低的层通过保持较大的纤维间间距获得。

·孔隙率分级不是通过在烧制过程中使用难以控制的成孔剂使基质元件逐渐形成多孔而获得,而是通过陶瓷纤维网络的密度获得。

·将模具上编织的层作为篮从模具上移除,并在真空或压力条件下用具有限定组成的树脂浸渍,从而产生已处于生坯状态的近净形状结构。这允许陶瓷的生坯加工,从而加速烧结体的典型加工时间。

·仅使用一种类型的浆料(树脂)形成基质。因此,不用担心层之间树脂的不相容性。

·在所有层中使用一种树脂消除了与CTE不匹配相关缺陷的风险,因为它代表了一种跨层的均质组成的基质。

·树脂组成可以是纯陶瓷或无机的,其在烧结时通过氧化或热解转化为陶瓷。

·由于纤维间空间填充了无机树脂,结构更坚韧。这种复合材料结构有助于结构在操作环境下逐渐失效,而不是如纯陶瓷体中那样突然和灾难性的破裂。

·最终结构为近净形状,这避免了常规技术的复杂且耗时的过程导致生产率低下。

附图说明

图1示出了使用相同纤维在心轴上构建各层具有不同编织密度(纤维间孔径)和编织数(层厚度)的功能分级(介电分级)层。

图2示出了使用相同织物在心轴上构建各层具有不同卷绕密度和卷绕粗细度的功能分级层。

具体实施方式

纤维增强陶瓷基质复合材料(FR-CMC)是先进且可定制的材料,与块状陶瓷相比具有改进的韧性和损伤容限[6]。从广义上讲,增强纤维可以分为无机纤维和有机纤维[4]。无机纤维可进一步分为非金属纤维和金属纤维,而有机纤维主要是碳纤维和聚合物纤维。陶瓷纤维与玻璃/矿物和单晶纤维同属于非金属无机纤维族[4]。

用于CMC应用的纤维材料选择至关重要。已知在高马赫数飞行期间天线罩材料上的温度高达1,000℃,限制了纤维材料的选择。聚合物和玻璃纤维分别具有500℃和700℃的降解温度,这限制了它们在较高温度下的CMC中的有效使用[6]。因此,陶瓷纤维是一种正确的选择,以支持在较高速度下暴露于高温和机械/热机械负荷的航空组件的高性能CMC。

陶瓷纤维分为氧化物陶瓷或非氧化物陶瓷。氧化物陶瓷是氧化铝(Al2O3)基纤维,其表现出较高的环境稳定性,但高温蠕变性能有限。这种纤维的氧化铝组成可以在10%至100%的范围内选择。非氧化物陶瓷纤维主要是SiC,其具有优异的热蠕变行为但较差的化学稳定性。这些纤维的SiC部分可以根据操作规格在10%至100%的范围内变化。对于两种纤维类别,结晶度、形态、沿材料的均匀性和表面性质是影响本领域中CMC性能的重要特性。纤维涂覆是通过在纤维和基质之间提供一个较弱界面来决定结构的损伤容限的另一个关键因素[4,6]。两种纤维类型之间的选择很大程度上取决于基质或填充纤维网络的无机树脂的类型。氧化物纤维应最好与氧化物基质(氧化物复合材料)一起使用,并且非氧化物纤维应最好与非氧化物基质(非氧化物复合材料)一起使用。然而,中间混合物也通过不同的加工技术制备,从而导致更新的应用。

至于氧化物复合材料,用纯Al2O3或纯Al2O3与低浓度的SiO2和B2O3共混制备的纤维显著提高了CMC的抗氧化性和耐碱性[3,4]。对于非氧化物复合材料,涂覆有C或BN的SiC纤维使SiC基质复合材料能够对抗高温变形[4]。Al2O3和SiC陶瓷的纤维与块状形式之间的比较示于表1中。值得一提的是,在恶劣的环境条件下,纤维的拉伸强度显著优于块状形式。

表1:陶瓷纤维与块状陶瓷性质的比较

综上,陶瓷纤维提供韧性,同时改进了块状陶瓷的损伤容限。由材料诸如熔融石英、硅酸铝镁、硅酸铝锂、Si3N4、SiAlON、Al2O3制成块状陶瓷的超音速/高超音速导弹天线罩在极端条件下由于其易碎性质而具有灾难性故障的风险。由于陶瓷在固结、干燥、烧制和加工步骤中破裂,用于生产这些陶瓷的技术诸如粉浆浇注、玻璃熔体浇注、热模塑均具有较低产率。

本方法的重点是制备陶瓷纤维增强CMC的材料。通过该方法,陶瓷纤维和与这些纤维相容的无机树脂可用于制备以亚音速、超音速和高超音速飞行的航空结构诸如天线罩、微波透明屏障、军用和民用飞行器的机罩和机头。对可用的纤维和树脂的组合没有限制,只要满足材料相容性和在所需频率下的RF透明度即可。此外,本方法可适用于构建宽带、窄带和单频带天线罩。纤维的类型和直径、编织类型、纤维孔径和每层的厚度、浆料材料组成专为所需的电磁性能而设计。

在本发明中,连续且相同的陶瓷纤维用于形成宽带天线罩的多个层。每一层由特定的纤维图案识别,其特征在于缠绕/编织角度、编织密度(纤维间孔径)和卷绕粗细度(层厚度)。因此,该图案通过其纤维间孔径和纤维厚度决定层的介电特性。天线罩的宽带特性可以通过改变层特性来优化。

具有分级孔隙率的结构的制造开始于以特定图案直接在特定支撑表面(例如心轴)上编织连续陶瓷纤维,以首先达到最小介电常数(最大孔隙率)。在编织之前,用非粘性化学品涂覆心轴以便在过程结束时轻松移除所编织的结构。一旦缠绕达到第一层所需的厚度,则一层叠一层地编织纤维密度逐渐增加的之后的层。如果以15°-135°之间的角度取向卷绕连续层中的陶瓷纤维,则可以实现在结构完整性上的显著改进。在本设计中,表示最小介电常数的机械最弱层被限制在天线罩的最内层,因此被保护免受外层的不利环境的影响。该方法如图1中所示,其中,心轴被3个不同的层卷绕,每一层由独特的图案和介电常数指定。第1层具有最大的纤维孔径,表现出最小的介电常数ε1。纤维密度从第2层到第3层逐渐增加,分别得到介电常数ε2和ε3。值得一提的是,ε1至ε3是由特定图案限定的相同纤维的层的介电常数值,而不是不同纤维的介电常数。一旦编织完3层,具有分级孔隙率的多层结构则从心轴移除并且准备用于渗透过程。层厚度由编织数限定,并且每层厚度可以保持相同或根据特定的RF设计而改变。

另选地,陶瓷织物也可作为纤维的替代物用于构造多层陶瓷结构和功能陶瓷结构。织物比纤维宽,因此它们加速了制造过程。如果用织物替代纤维,则通过类似于上述的过程构造其结构(图2)。在这种情况下,首先编织具有较高的织物间开孔的机械较弱的层作为最内层,远离容易出现更具侵蚀性条件的外表面(外层)。层1(L_1)具有最大的织物开孔且因此具有最小的介电常数,而层3(L_3)具有最小的织物开孔且因此具有最大的介电常数。因此,各层的介电常数的顺序可以写成εL_1<εL_2<εL_3。

一旦连续纤维卷绕在心轴上,并且满足所需宽带性能的结构的所有层叠合,则从心轴上移除该结构。其基本上是由根据特定设计编织的密集纤维网络形成的已准备好用于渗透的篮。浆料渗透是浆料填充纤维间间隙的过程。该过程最好在真空下进行,其中纤维篮置于充满浆料的特殊腔室中。

另选地,篮可以置于阴模具和阳模具之间并由阴模具和阳模具支撑,该阴模具和阳模具由具有非粘性表面的不锈钢制成,浆料倒入模具中。在这两种方法中,在密闭的腔室或模具中施加真空,使具有优化流变学的浆料流动到纤维之间的开放空间中。

在不同的方法中,篮可以浸入充满稠浆料的容器中。然后,该结构从没有浆料的相对侧(内侧)暴露于真空,将浆料拉入纤维之间的小孔中。

在所有这些方法中,必须仔细观察纤维结构的完整性并保持其完好无损,以防止由真空引起的可能的变形。作为进一步的处理,也可以考虑和应用烧制结构的加工,而不会对结构产生有害影响,因为纤维符合由基质限定的轮廓。

将浆料渗透的纤维网络干燥并小心地脱粘。由于所有的热处理都有可能对结构产生不可逆的影响诸如裂纹的产生和扩展、破裂、下垂、膨胀、塌陷,所以必须仔细优化脱粘和烧结型材。因此,必须在加工之前仔细地界定原材料组成以及其流变学和热机械行为的特征。

所述发明适用于连续氧化物/非氧化物纤维以及与这些纤维相容的浆料。换言之,纤维-浆料必须一起限定以保证材料的相容性和最终结构的性能。纤维应具有与基质的温度稳定性范围相当的烧结温度、较低的CTE、较低的介电常数和损耗以及较高的热稳定性和机械强度。此外,这些特性预期在温度波动时被保持/略微偏离。大多数的这些要求通过熔融石英能很好地满足,熔融石英几十年来一直被用于商业导弹天线罩。因此,含有聚硅氧烷、聚硅氮烷、聚碳硅烷的PDC基浆料是与所选纤维一起使用的候选浆料。另选地,也可以使用浆料以及不同材料诸如氧化铝的多种不同组合,只要上述纤维-浆料规格匹配。

目前天线罩材料诸如熔融石英、硅酸镁铝、硅酸铝锂、Si3N4、SiAlON、Al2O3的纤维选择是有限的。在所有商业产品中,Al2O3和SiC分别是市售的氧化物和非氧化物纤维的候选材料。前者以不同的组成生产以满足不同应用中的要求,而后者由于其报道的在高温下的半导电特性而不完全适合作为天线罩材料。本公开的发明通过纤维设计而不是通过材料本身来排列宽带结构的介电层克服了这种限制。卷绕密度(纤维间孔径)和卷绕粗细度(层厚度)是限定每层的介电常数的两个主要参数。

参考文件

1B.Kumar,J.Hu,“编织织物结构和特性”(Woven Fabric Structures and Properties),《高性能纺织品工程》(Engineering of High-Performance Textiles),2018,133-151.

2K.Bilisik,N.Sahbaz Karaduman,N.E.Bilisik,“技术纺织品应用的3D织物”(3D Fabrics for Technical Textile Applications),《技术展望》(INTECH),2016,81-141.

3B.Klauss,B.Schawallar,“陶瓷纤维发展的现代方面”(Modern Aspects of Ceramic Fiber Development),2006,《科学与技术进展》(Advances in Science and Technology),Vol.50,1-8.

4B.Clauss,《用于陶瓷基质复合材料的纤维》(Fibers for Ceramic Matrix Composites),第1章,陶瓷基质复合材料(Ceramic Matrix Composites).Walter Krenkel编辑,WILEY-VCH Verlag GmbH&Co.KGaA,2008,1-20.

5《Nextel应用手册》(Nextel Application Brochure),1-16.

6《陶瓷纤维与涂层》(Ceramic Fibers and Coatings),国家学报(National Academy Press)华盛顿D.C.1998.

7U.S.A.F.航空电子实验室(U.S.A.F.Avionics Laboratory),《源自粉浆浇筑熔融二氧化硅的轻量化宽带天线罩的发展》(Development of Lightweight Broadband Radomes From Slip-Cast Fused Silica),1966.

8D.C.Chang,《AGM-88HARM天线罩的计算和测量传输数据对比》(Comparison of Computed and Measured Transmission Data for the AGM-88HARM Radome),1993,海军研究院科学硕士论文.