首页 > 石油煤气 专利正文
一种水溶性纳米轮带高温超润滑剂的制备方法与流程

时间:2022-02-24 阅读: 作者:专利查询

一种水溶性纳米轮带高温超润滑剂的制备方法与流程

1.本发明涉及润滑剂的技术领域,具体涉及一种水溶性纳米轮带高温超润滑剂的制备方法。


背景技术:

2.当前,在水泥行业的回转窑、钢铁和化工等行业的高温设备中,润滑技术是生产的关键环节;润滑剂的发展制约着行业的发展。以回转窑为例,回转窑是水泥厂生产的关键设备。它通过齿轮转动,中间有三组托轮和轮带构成的支撑,做回转运动;垫板是位于回转窑体和轮带之间的弧形的间隙排列的条状支撑,它起着冷却筒体和轮带、传递扭矩和便于安装轮带的作用。
3.回转窑轮带起支撑窑体的作用,轮带与窑体之间存在一定的间隙,在回转窑运转过程中轮带与窑体发生相对运动,形成滑动摩擦副。因此,轮带内表面与其相对应位置的窑体垫板之间的润滑就必须给于足够的关注。如果该区域润滑不足或是润滑不当会造成垫板的加速磨损,影响窑体运行的平稳性,从而导致窑砖的稳固性减小甚至脱落而造成停窑,减产。
4.回转窑轮带在270℃

370℃高温和数十吨重负荷下长期连续工作,工况条件十分苛刻。目前,市场上的产品主要以油基产品为主,如中国专利cn102559348a能形成高强度的高温保护润滑膜,有效地防止回转窑抖动、扭曲、变形及耐火砖脱落。油基类虽然油较好的润滑性,但是其在300℃高温情况下,油品的氧化及挥发严重,油品冒烟严重,并且可能发生火灾,不仅污染环境,而且危及设备的安全使用。纯水基轮带剂在高温下挥发速度快,无闪点,无冒烟情况,但是难以保证持续有效的润滑。
5.随着世界范围内对环境的保护、节约能源的日益重视,目前,广泛采用的油基轮带剂存在生物降解性差,污染环境的缺点,正面临环境要求的严峻考验,而水基润滑产品的润滑性能无法达到令人满意的程度;因此,开发环境友好、耐高温、润滑性能好、使用安全的轮带剂产品成为新的发展方向。
6.为此,我们提供了一种水溶性纳米轮带高温超润滑剂的制备方法。通过一种电荷吸引以及水热还原法制备出三明治结构的mos2/石墨烯/mos2。本发明通过将石墨烯插入到层状的mos2中,使层状的mos2层间距增大,三明治结构的mos2/石墨烯/mos2使二硫化钼在高温下不易被碳化,使其保持较好的润滑性,能够有效避免因受高温影响其使用寿命降低;同时,水性生物基杀菌剂中将碳纳米管和溶菌酶复合,能提高溶菌酶的分散性进而提高了其杀菌性能。良好的润滑散热功能以及生物菌落可控性,可以大大降低轮带和设备的使用寿命,降低摩擦引起的能源过渡损耗。


技术实现要素:

7.本发明的目的在于提供一种水溶性纳米轮带高温超润滑剂的制备方法,本发明提供的润滑剂中,添加了三明治结构的mos2/石墨烯/mos2,同时采用了水

油基混合的方式提
高了润滑剂的润滑性,兼具了油基润滑剂和水基润滑剂的双重特性,同时,又克服了油基润滑剂和水基润滑剂不可避免的缺陷,是一种性价比非常高的产品。基于石墨烯插入到层状的mos2中,使层状的mos2层间距增大,三明治结构的mos2/石墨烯/mos2使二硫化钼在高温下不易被碳化,使其保持较好的润滑性;水性生物基杀菌剂中将碳纳米管和溶菌酶复合,能提高溶菌酶的分散性进而提高了其杀菌性能。
8.为实现上述目的,本发明提供如下技术方案:一种水溶性纳米轮带高温超润滑剂的制备方法,包括如下步骤,
9.1)固体添加剂三明治结构mos2/石墨烯/mos2的制备:将二硫化钼加入到有机锂盐中的有机烃溶液中磁力搅拌2~3h,其中二硫化钼和有机锂盐的摩尔量比为1:2;在室温惰性氩气气氛条件下,将上述混合液搅拌5~8天,用有机烃溶剂洗涤并且在减压条件下干燥,得limos2;再将limos2加入去离子水中,超声2~3h,得层剥离的limos2;将ctab完全溶解到去离子水中(二者质量比为1:5),将其与层剥离的limos2充分混合并超声2~3h,形成层剥离的limos2‑
cta
+
溶液;向上述limos2‑
cta
+
溶液中加入氧化石墨烯(go)的分散溶液,继续超声2~3h,形成limos2‑
cta
+

go溶液;将还原剂加入上述limos2‑
cta
+

go溶液中,转入反应釜160~180℃反应6~8h,将沉淀物经过过滤、用去离子水和乙醇洗涤3~5次,通过冷冻干燥18~24h得mos2/石墨烯/mos2;
10.2)水性生物基杀菌剂的制备:将碳纳米管加入到摩尔浓度为10
‑3~10
‑4mol/l的溶菌酶水溶液中,将该溶液置于超声浴中15~20min,再置于冰浴中超声60~90min后离心,得碳纳米管/溶菌酶;
11.3)油相混合液的制备:取润滑剂、乳化剂、油性杀菌剂依次添加到基础油中,于50~60℃下,充分搅拌,得油相混合液;
12.4)水相溶液的制备:取防腐防锈剂、水性生物基杀菌剂碳纳米管/溶菌酶依次添加到水中,充分溶解;
13.5)乳化液的制备:将步骤4)所得水相溶液添加到步骤3)所得油相混合液中,搅拌均匀;
14.6)胶质混合物制备:将固体添加剂三明治结构mos2/石墨烯/mos2添加到步骤5)所得乳化液中,搅拌;
15.7)将步骤6)所得胶质混合物,在三辊球磨机中进行均质2~3遍,即得产品。
16.优选的,所述步骤1)中,有机锂盐是正丁基锂、乳酸锂或异戊基锂中的一种或其组合;有机烃是正戊烷、异丙烷或正丁烷中的一种或其组合;还原剂为硫脲或者硼氢化钠的中一种或其组合;
17.优选的,所述步骤3)中,所述润滑剂为由季戊四醇油酸酯和聚醚组成,所述季戊四醇油酸酯和聚醚的重量比为2:1~4:1;所述复合乳化剂为由吐温

80、石油磺酸钠和司盘

80组成,所述吐温

80、石油磺酸钠和司盘

80的重量比为6:2:1~3:1:0.1;所述的油性杀菌剂是bk、bit

20和ipbc组成,bk、bit

20和ipbc的重量比为10:5:1~10:10:1;所述基础油为矿物油、偏苯三酸酯及pao中的一种或其组合;
18.优选的,所述步骤4)中,所述防腐防锈剂为三乙醇胺、癸二酸三乙醇胺酯、苯骈三氮唑中的一种或其组合。
19.与现有技术相比,本发明的有益效果如下:
20.本发明提供的水溶性纳米轮带高温超润滑剂中,添加了mos2/石墨烯/mos2,同时采用了水

油基混合的方式提高了润滑剂的润滑性,兼具了油基润滑剂和水基润滑剂的双重特性。基于石墨烯插入到层状的mos2中,使层状的mos2层间距增大,使二硫化钼与石墨烯通过化学键相结合,三明治结构的mos2/石墨烯/mos2使二硫化钼在高温下不易被碳化,使其保持较好的润滑散热性;水性生物基杀菌剂中将碳纳米管和溶菌酶复合,能提高溶菌酶的分散性进而提高了其杀菌性能。
附图说明
21.图1为实施例1三明治结构mos2/石墨烯/mos2的sem图
22.图2为实施例2水溶性纳米轮带高温超润滑剂稀释后的sem图
具体实施方式
23.下面将结合本发明的实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
24.实施例一:
25.1)固体添加剂三明治结构mos2/石墨烯/mos2的制备:将二硫化钼加入到正丁基锂中的正戊烷溶液中磁力搅拌2h,其中二硫化钼和正丁基锂的摩尔量比为1:2;在室温惰性氩气气氛条件下,将上述混合液搅拌5天,用正戊烷溶剂洗涤并且在减压条件下干燥,得limos2;再将limos2加入去离子水中,超声2h,得层剥离的limos2;将ctab完全溶解到去离子水中(二者质量比为1:5),将其与层剥离的limos2充分混合并超声2h,形成层剥离的limos2‑
cta
+
溶液;向上述limos2‑
cta
+
溶液中加入氧化石墨烯(go)的分散溶液,继续超声2h,形成limos2‑
cta
+

go溶液;将硫脲加入上述limos2‑
cta
+

go溶液中,转入反应釜160℃反应8h,将沉淀物经过过滤、用去离子水和乙醇洗涤3次,通过冷冻干燥18h得mos2/石墨烯/mos2;
26.2)水性生物基杀菌剂的制备:将碳纳米管加入到摩尔浓度为10
‑3mol/l的溶菌酶水溶液中,将该溶液置于超声浴中15min,再置于冰浴中超声60min后离心,得碳纳米管/溶菌酶;
27.3)油相混合液的制备:取润滑剂季戊四醇油酸酯和聚醚(重量比为3:1)、乳化剂吐温

80、石油磺酸钠和司盘

80(重量比为3:2:1)、油性杀菌剂bk、bit

20和ipbc(重量比为10:6:1);依次添加到基础油中,于50℃下,充分搅拌,得油相混合液;
28.4)水相溶液的制备:取防腐防锈剂三乙醇胺、水性生物基杀菌剂碳纳米管/溶菌酶依次添加到水中,充分溶解;
29.5)乳化液的制备:将步骤4)所得水相溶液添加到步骤3)所得油相混合液中,搅拌均匀;
30.6)胶质混合物制备:将固体添加剂三明治结构mos2/石墨烯/mos2添加到步骤5)所得乳化液中,搅拌;
31.7)将步骤6)所得胶质混合物,在三辊球磨机中进行均质2遍,即得水溶性纳米轮带高温超润滑剂。
32.实施例二:
33.1)固体添加剂三明治结构mos2/石墨烯/mos2的制备:将二硫化钼加入到乳酸锂中的正丁烷溶液中磁力搅拌3h,其中二硫化钼和乳酸锂的摩尔量比为1:2;在室温惰性氩气气氛条件下,将上述混合液搅拌8天,用正丁烷溶剂洗涤并且在减压条件下干燥,得limos2;再将limos2加入去离子水中,超声3h,得层剥离的limos2;将ctab完全溶解到去离子水中(二者质量比为1:5),将其与层剥离的limos2充分混合并超声2h,形成层剥离的limos2‑
cta
+
溶液;向上述limos2‑
cta
+
溶液中加入氧化石墨烯(go)的分散溶液,继续超声2h,形成limos2‑
cta
+

go溶液;将硫脲加入上述limos2‑
cta
+

go溶液中,转入反应釜180℃反应6h,将沉淀物经过过滤、用去离子水和乙醇洗涤3次,通过冷冻干燥24h得mos2/石墨烯/mos2;
34.2)水性生物基杀菌剂的制备:将碳纳米管加入到摩尔浓度为10
‑4mol/l的溶菌酶水溶液中,将该溶液置于超声浴中20min,再置于冰浴中超声90min后离心,得碳纳米管/溶菌酶;
35.3)油相混合液的制备:取润滑剂季戊四醇油酸酯和聚醚(重量比为2:1)、乳化剂吐温

80、石油磺酸钠和司盘

80(重量比为6:2:1)、油性杀菌剂bk、bit

20和ipbc(重量比为10:5:1);依次添加到基础油中,于60℃下,充分搅拌,得油相混合液;
36.4)水相溶液的制备:取防腐防锈剂癸二酸三乙醇胺酯、水性生物基杀菌剂碳纳米管/溶菌酶依次添加到水中,充分溶解;
37.5)乳化液的制备:将步骤4)所得水相溶液添加到步骤3)所得油相混合液中,搅拌均匀;
38.6)胶质混合物制备:将固体添加剂三明治结构mos2/石墨烯/mos2添加到步骤5)所得乳化液中,搅拌;
39.7)将步骤6)所得胶质混合物,在三辊球磨机中进行均质2遍,即得水溶性纳米轮带高温超润滑剂。
40.实施例3
41.1)固体添加剂三明治结构mos2/石墨烯/mos2的制备:将二硫化钼加入到异戊基锂中的异丙烷溶液中磁力搅拌3h,其中二硫化钼和异戊基锂的摩尔量比为1:2;在室温惰性氩气气氛条件下,将上述混合液搅拌5天,用异丙烷溶剂洗涤并且在减压条件下干燥,得limos2;再将limos2加入去离子水中,超声3h,得层剥离的limos2;将ctab完全溶解到去离子水中(二者质量比为1:5),将其与层剥离的limos2充分混合并超声2h,形成层剥离的limos2‑
cta
+
溶液;向上述limos2‑
cta
+
溶液中加入氧化石墨烯(go)的分散溶液,继续超声2h,形成limos2‑
cta
+

go溶液;将硼氢化钠加入上述limos2‑
cta
+

go溶液中,转入反应釜180℃反应6h,将沉淀物经过过滤、用去离子水和乙醇洗涤3次,通过冷冻干燥24h得mos2/石墨烯/mos2;
42.2)水性生物基杀菌剂的制备:将碳纳米管加入到摩尔浓度为10
‑3mol/l的溶菌酶水溶液中,将该溶液置于超声浴中20min,再置于冰浴中超声90min后离心,得碳纳米管/溶菌酶;
43.3)油相混合液的制备:取润滑剂季戊四醇油酸酯和聚醚(重量比为4:1)、乳化剂吐温

80、石油磺酸钠和司盘

80(重量比为3:1:1)、油性杀菌剂bk、bit

20和ipbc(重量比为10:8:1);依次添加到基础油中,于60℃下,充分搅拌,得油相混合液;
44.4)水相溶液的制备:取防腐防锈剂苯骈三氮唑、水性生物基杀菌剂碳纳米管/溶菌
酶依次添加到水中,充分溶解;
45.5)乳化液的制备:将步骤4)所得水相溶液添加到步骤3)所得油相混合液中,搅拌均匀;
46.6)胶质混合物制备:将固体添加剂三明治结构mos2/石墨烯/mos2添加到步骤5)所得乳化液中,搅拌;
47.7)将步骤6)所得胶质混合物,在三辊球磨机中进行均质3遍,即得水溶性纳米轮带高温超润滑剂。
48.表1水溶性纳米轮带高温超润滑剂的杀菌性能
49.样品杀大肠杆菌率杀金黄色葡萄球菌率杀白色念珠菌率实施例199.9%99.9%99.9%实施例299.9%99.9%99.9%实施例399.9%99.9%99.9%
50.表2水溶性纳米轮带高温超润滑剂的性能测试结果
51.