1.本发明涉及风力发电机齿轮油技术领域,尤其涉及一种抗微点蚀风电齿轮油及其制备方法。
背景技术:2.在能源危机和环境污染的双重压力下,大力发展可再生资源成为新的发展趋势,风力发电作为新能源领域的成功案例近年来得到了快速发展。我国的风力发电机主要安装在内蒙古、甘肃、新疆及沿海等风能资源丰富的偏远地区,风电设备的运行环境较为恶劣,昼夜温差大,易受潮湿、海水腐蚀等环境因素的影响,而且风电齿轮箱自身长期低速重载的工况极易引起齿轮疲劳磨损,因此,齿轮普遍存在微点蚀现象。事实上,微点蚀会导致齿面产生微小的裂缝、坑点,引起噪音和振动,影响齿轮的啮合精度,严重时会引发断齿,影响整体装备的运行寿命。目前微点蚀已经成为影响低速重载齿轮的传动精度、使用寿命及运行可靠性的一个重要影响因素。鉴于油品的质量直接影响齿轮表面的微点蚀现象,因此,开发一种抗微点蚀的风电齿轮油具有重要意义。
技术实现要素:3.针对上述技术问题,本发明提供一种抗微点蚀性能优异的风电齿轮油。
4.为达到上述发明目的,本发明实施例采用了如下的技术方案:
5.一种抗微点蚀风电齿轮油,包括以下质量份数的组分:调和基础油45~65份、抗微点蚀复合剂5~10份、胺类抗氧化剂2~5份、金属减活剂1.5~2.5份、降凝剂0.5~2份和消泡剂0.5~2份;
6.所述调和基础油包括聚α烯烃、茂金属聚α烯烃、烷基萘和蓖麻油;
7.所述抗微点蚀复合剂包括聚酯多元醇、聚蓖麻油酸酯和醇胺型硼酸酯。
8.相对于现有技术,本发明提供的一种抗微点蚀风电齿轮油,具有以下优势:
9.泡沫特性不佳的基础油会影响到齿轮油的整体泡沫性能,本发明中经特定组分组成的调和基础油高温起泡性低,减少了齿面啮合过程中局部温度升高时的起泡量,降低了气泡中的空气与齿轮表面的接触,提高齿轮油的抗微点蚀性能,同时该调和基础油还具备较高的粘度指数和较低的摩擦系数,可在金属表面形成较厚的润滑油膜,减少金属的直接接触,降低金属摩擦副的摩擦和磨损,能有效避免或抑制微点蚀的形成;调和基础油中的烷基萘和茂金属聚α烯烃的氧化安定性具有协同功效,高于单一组分的氧化安定性,延长了齿轮油的换油周期,烷基萘的萘环结构和蓖麻油的羟基、酯基官能团赋予了该调和基础油较强的极性,使其对该抗微点蚀风电齿轮油中的极性成分具有较好的溶解性和分散性,增强了与密封材料的相容性。通过在该抗微点蚀风电齿轮油中引入抗微点蚀复合剂,能够将羧基、氨基和羟基等极性基团引入到调和基础油各成分的分子结构中,使该齿轮油对金属有很强的亲和力,促使金属表面形成致密的氧化物钝化层,隔离有害物质与金属的接触,从而对微点蚀现象产生明显的抑制作用;胺类抗氧化剂具有较好的高温抗氧性,使齿轮油在运
行速度较快、摩擦副的摩擦力较大导致油温较高的情况下仍具备较好的抗氧化性能,并且与烷基萘之间能够产生协同作用,提升齿轮油的氧化稳定性,赋予齿轮油优良的抗氧化性;金属减活剂协同调和基础油在金属表面形成一层疏水的保护膜,提高了齿轮油的抗微点蚀能力,同时降低金属的催化氧化活性,同时配合胺基抗氧化剂为齿轮油提供抗氧化能力;加入降凝剂能够保证齿轮箱在极寒的低温天气正常流动;齿轮油在运行过程中处于流动的状态,容易产生气泡,气泡的产生会影响齿轮油的均匀分散性,通过加入消泡剂协同蓖麻油能够控制气泡的产生,具有良好的消泡效果,保证齿轮油的正常工作。
10.本发明提供的齿轮油相容性好,能够充分发挥各组分的功能,并且通过不同组分之间的协同功效,使得齿轮油具有优异的抗微点蚀性,同时具有高温抗氧化性能、消泡性能和低温流动性,能够在极端的高低温气候下都可以正常工作,延长设备的使用寿命。
11.优选地,所述聚α烯烃、茂金属聚α烯烃、烷基萘和蓖麻油的质量比为(2~3.5):(1~1.5):(1~1.5):(0.2~0.5)。
12.优选地,所述聚酯多元醇、聚蓖麻油酸酯和醇胺型硼酸酯的质量比为(1~1.2):(0.5~1):(1~1.5)。
13.聚酯多元醇中富含酯基、羟基等功能基团,具有很强的极性,能够提供良好的减摩作用,并赋予齿轮油优良的相容性,同时还为齿轮油提供良好的抗乳化性,保证风电齿轮运行时能快速的实现油水分离;聚蓖麻油酸酯提供良好的润滑性,一方面能够在金属表面形成一层致密的吸附膜,明显降低齿轮油的摩擦系数,减少微点蚀数量,阻止疲劳裂纹的扩展,提高齿轮的疲劳寿命,另一方面聚蓖麻油酸酯中的羧基能够与胺类抗氧化剂中的氨基形成氢键,增强体系的交联,提高齿轮油的稳定性;醇胺硼酸酯能够提供齿轮油优异的极压抗磨性能以及防锈性能。通过采用上述合理的配比,能够提升齿轮油的相容性,增强稳定性,配合调和基础油使齿轮油具备优异的抗微点蚀性能,同时还赋予齿轮油具备良好的抗乳化性、防锈性以及极压抗磨性,综合性能优异。
14.优选地,所述胺类抗氧化剂为二异辛基二苯胺或者二壬基二苯胺中的至少一种。
15.优选地,所述金属减活剂为噻二唑衍生物或苯并三氮唑衍生物中的至少一种。
16.优选地,所述降凝剂包括聚丙烯酸酯和含氮化合物,所述聚丙烯酸酯和含氮化合物的质量比为(1~1.2):(0.3~0.6)。
17.其中,含氮化合物为二乙烯三胺或乙醇胺中的至少一种。
18.降凝剂的析出温度和分子结构中的侧链碳数会影响蜡结晶表面吸附或共晶效果,进而影响降凝效果,申请人通过研究发现聚丙烯酸酯降凝剂和含氮化合物进行配合使用,可以更好地改善基础油的低温流动性,降凝效果显著,另外醇胺型硼酸酯与含氮化合物协同具有突出的使用效果,可使蜡晶相互排斥阻碍蜡晶的聚集。同时聚丙烯酸酯还具有良好的润滑性,降低金属之间摩擦和磨损的概率,协同调和基础油为齿轮油提供优良的抗微点蚀性能。
19.优选地,所述消泡剂为聚硅氧烷或甲基硅油中的至少一种。
20.以及,本发明还提供了一种上述抗微点蚀风电齿轮油的制备方法,具体包括以下步骤:
21.步骤a、按上述的抗微点蚀风电齿轮油的组分重量百分比称取各组分,备用;
22.步骤b、将所述聚α烯烃、茂金属聚α烯烃、烷基萘和蓖麻油混匀,升温搅拌制备得到
调和基础油;
23.步骤c、向所述调和基础油中依次加入所述抗微点蚀复合剂、胺类抗氧化剂、金属减活剂、降凝剂和消泡剂,升温搅拌均匀后即得抗微点蚀风电齿轮油。
24.所述制备方法生产的抗微点蚀风电齿轮油不仅抗微点蚀性能好,还具备高温抗氧化能力强以及良好的消泡性能、低温流动性和抗乳化性能,可有效延长设备使用寿命和保养周期,上述制备方法操作简单,具有良好的经济和社会效益。
25.优选地,步骤b中,升温至50~60℃,搅拌时间为0.5~1h,转速为300~400r/min。
26.优选地,步骤c中,升温至65~75℃,搅拌时间为1~2h,转速为400~500r/min。
具体实施方式
27.为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
28.聚α烯烃选用durasyn 180r;
29.茂金属聚α烯烃选用spectrasyn elite 300;
30.烷基萘选用synesstic 5。
31.实施例1:
32.一种抗微点蚀风电齿轮油,包括以下质量份数的组分:调和基础油50份、抗微点蚀复合剂8份、二异辛基二苯胺2份、噻二唑衍生物2份、降凝剂1份和聚硅氧烷0.8份,其中,调和基础油为质量比为3:1:1.5:0.4的聚α烯烃、茂金属聚α烯烃、烷基萘和蓖麻油,抗微点蚀复合剂为质量比为1:0.8:1.2的聚己二酸二乙二醇酯二醇、聚蓖麻油酸酯和三乙醇胺硼酸酯,降凝剂为质量比为1:0.5的聚丙烯酸酯和二乙烯三胺。
33.其制备方法包括以下步骤:
34.步骤a、按上述的抗微点蚀风电齿轮油的组分重量百分比称取各组分,备用;
35.步骤b、将聚α烯烃、茂金属聚α烯烃、烷基萘和蓖麻油混匀,在55℃下以300r/min的转速搅拌1h制备得到调和基础油;
36.步骤c、向所述调和基础油中依次加入所述抗微点蚀复合剂、胺类抗氧化剂、金属减活剂、降凝剂和消泡剂,在65℃下以400r/min的转速搅拌1.5h,即得抗微点蚀风电齿轮油。
37.实施例2:
38.一种抗微点蚀风电齿轮油,包括以下质量份数的组分:调和基础油45~65份、抗微点蚀复合剂5~10份、二异辛基二苯胺2~5份、噻二唑衍生物1.5~2.5份、降凝剂0.5~2份和聚硅氧烷0.5~2份,其中,调和基础油为质量比为2.5:1.2:1.2:0.3的聚α烯烃、茂金属聚α烯烃、烷基萘和蓖麻油,抗微点蚀复合剂为质量比为1:0.6:1.2的聚丁二酸丙二醇酯二醇、聚蓖麻油酸酯和二乙醇胺硼酸酯,降凝剂为质量比为1.2:0.5的聚丙烯酸酯和乙醇胺。
39.其制备方法包括以下步骤:
40.步骤a、按上述的抗微点蚀风电齿轮油的组分重量百分比称取各组分,备用;
41.步骤b、将聚α烯烃、茂金属聚α烯烃、烷基萘和蓖麻油混匀,在60℃下以350r/min的转速搅拌0.5h制备得到调和基础油;
42.步骤c、向所述调和基础油中依次加入所述抗微点蚀复合剂、胺类抗氧化剂、金属减活剂、降凝剂和消泡剂,在75℃下以450r/min的转速搅拌1.5h,即得抗微点蚀风电齿轮油。
43.实施例3:
44.一种抗微点蚀风电齿轮油,包括以下质量份数的组分:调和基础油65份、抗微点蚀复合剂8份、二壬基二苯胺4份、苯并三氮唑衍生物2份、降凝剂0.5~2份和聚硅氧烷0.5~2份,其中,调和基础油为质量比为2:1.2:1:0.2的聚α烯烃、茂金属聚α烯烃、烷基萘和蓖麻油,抗微点蚀复合剂为质量比为1:0.6:1.2的聚丁二酸丙二醇酯二醇、聚蓖麻油酸酯和三乙醇胺硼酸酯,降凝剂为质量比为1:0.6的聚丙烯酸酯和二乙烯三胺。
45.其制备方法包括以下步骤:
46.步骤a、按上述的抗微点蚀风电齿轮油的组分重量百分比称取各组分,备用;
47.步骤b、将聚α烯烃、茂金属聚α烯烃、烷基萘和蓖麻油混匀,在50℃下以350r/min的转速搅拌1h制备得到调和基础油;
48.步骤c、向所述调和基础油中依次加入所述抗微点蚀复合剂、胺类抗氧化剂、金属减活剂、降凝剂和消泡剂,在70℃下以450r/min的转速搅拌2h,即得抗微点蚀风电齿轮油。
49.实施例4:
50.实施例4是在实施例1的基础上将聚己二酸二乙二醇酯二醇、聚蓖麻油酸酯和三乙醇胺硼酸酯的质量比调整为1:0.2:1.2,其他成分及制备方法同实施例1。
51.实施例5:
52.实施例5是在实施例1的基础上将聚己二酸二乙二醇酯二醇、聚蓖麻油酸酯和三乙醇胺硼酸酯的质量比调整为1:1.5:1.2,其他成分及制备方法同实施例1。
53.实施例6:
54.实施例6是在实施例1的基础上将聚己二酸二乙二醇酯二醇、聚蓖麻油酸酯和三乙醇胺硼酸酯的质量比调整为0.5:1.5:1.2,其他成分及制备方法同实施例1。
55.实施例7:
56.实施例7是在实施例1的基础上将聚己二酸二乙二醇酯二醇、聚蓖麻油酸酯和三乙醇胺硼酸酯的质量比调整为1:0.2:2,其他成分及制备方法同实施例1。
57.对比例1:
58.对比例1是在实施例1的基础上将茂金属聚α烯烃替换为聚α烯烃,其他成分及制备方法同实施例1。
59.对比例2:
60.对比例2是在实施例1的基础上将烷基萘替换为聚α烯烃,其他成分及制备方法同实施例1。
61.对比例3:
62.对比例3是在实施例1的基础上将蓖麻油替换为聚α烯烃,其他成分及制备方法同实施例1。
63.对比例4:
64.对比例4是在实施例1的基础上将三乙醇胺硼酸酯替换为硼酸甲酯,其他成分及制备方法同实施例1。
65.对比例5:
66.对比例5是在实施例1的基础上将聚丙烯酸酯替换为聚α烯烃,其他成分及制备方法同实施例1。
67.为了更好的说明本发明实施例提供的抗微点蚀风电齿轮油的性能,将上述实施例1~7和对比例1~5制备的风电齿轮油分别进行性能测试,表1为实施例1~7和对比例1~5制备的风电齿轮油的主要指标检测数据。
68.表1风电齿轮油的主要指标检测数据
69.[0070][0071]
表1中的数据表明:实施例1~7和对比例1~5制备的抗微点蚀风电齿轮油完全满足标准要求,相较于实施例4~7和对比例1~5,实施例1~3制得的抗微点蚀风电齿轮油存在运动粘度较高、倾点较低、烧结负荷较高以及磨斑直径较小的现象。由此表明,本发明提供的抗微点蚀风电齿轮油性能优异。
[0072]
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。