首页 > 化学装置 专利正文
壳聚糖/海藻酸钠水凝胶及其制备方法和使用方法与流程

时间:2022-02-03 阅读: 作者:专利查询

壳聚糖/海藻酸钠水凝胶及其制备方法和使用方法与流程

1.本技术涉及材料技术领域,具体地涉及一种壳聚糖/海藻酸钠水凝胶及其制备方法和使用方法。


背景技术:

2.水体重金属污染是水污染中较为严重的一种污染,一方面对水生生物有害,另一方面如果用含有重金属离子的水体灌溉农田,会使土壤受污染,造成农作物中重金属离子的富集,通过食物链传递,最终危害人类健康。
3.因此,对水体中重金属的检测及去除具有重大的意义。


技术实现要素:

4.有鉴于此,本技术提供一种壳聚糖/海藻酸钠水凝胶及其制备方法和使用方法,用于检测及去除水体中的重金属。
5.第一方面,本技术实施例提供了一种壳聚糖/海藻酸钠水凝胶的制备方法,包括:
6.制备壳聚糖和海藻酸钠悬浮液,其中,所述壳聚糖和海藻酸钠的质量比为1:1;
7.在所述壳聚糖和所述海藻酸钠上原位生长碳量子点cd,获得原位生长cd后的壳聚糖和海藻酸钠悬浮液;
8.在所述原位生长cd后的壳聚糖和海藻酸钠悬浮液中加入乙酸,获得低机械强度壳聚糖/海藻酸钠水凝胶;
9.将所述低机械强度壳聚糖/海藻酸钠水凝胶浸泡在氯化钙溶液中进行交联反应,获得高机械强度壳聚糖/海藻酸钠水凝胶。
10.优选地,所述在所述壳聚糖和所述海藻酸钠上原位生长碳量子点cd,获得原位生长cd后的壳聚糖和海藻酸钠悬浮液,包括:
11.将所述壳聚糖和海藻酸钠悬浮液在油浴中加热搅拌回流,获得原位生长cd后的壳聚糖和海藻酸钠悬浮液。
12.优选地,所述油浴温度为140℃-180℃。
13.优选地,所述加热搅拌回流的时间为2-8h。
14.优选地,所述原位生长cd后的壳聚糖和海藻酸钠悬浮液与所述乙酸的体积比为40:1。
15.优选地,将所述低机械强度壳聚糖/海藻酸钠水凝胶浸泡在氯化钙溶液中进行交联反应的时间为10-30h。
16.优选地,将所述低机械强度壳聚糖/海藻酸钠水凝胶浸泡在氯化钙溶液中进行交联反应,包括:
17.将所述低机械强度壳聚糖/海藻酸钠水凝胶填入模具中,浸泡在氯化钙溶液中进行交联反应。
18.第二方面,本技术实施例提供了一种壳聚糖/海藻酸钠水凝胶,包括:壳聚糖链和
海藻酸钠链,所述壳聚糖链和所述海藻酸钠链上原位生长cd,所述壳聚糖链和所述海藻酸钠链通过静电相互作用产生物理交联,不同的所述海藻酸钠链通过钙离子产生物理交联。
19.第三方面,本技术实施例提供了一种壳聚糖/海藻酸钠水凝胶的使用方法,通过第二方面所述的壳聚糖/海藻酸钠水凝胶进行重金属离子的检测。
20.第四方面,本技术实施例提供了一种壳聚糖/海藻酸钠水凝胶的使用方法,通过第二方面所述的壳聚糖/海藻酸钠水凝胶进行重金属离子的吸附。
21.本技术实施例提供的壳聚糖/海藻酸钠水凝胶的制备方法绿色简单,选用环保的生物基高分子材料,经过快捷的一锅法热处理,在壳聚糖和海藻酸钠链上原位生长cd,使cd的制备与cd和聚合物的结合同时完成。所得荧光水凝胶由于双重物理交联的作用,机械性能优秀,结构稳定,检测方便,易于运输和工业化;在较宽的ph范围内,性能稳定,可以适应不同的检测环境;cd不易外泄且未使用有毒有害溶剂,因此对环境友好。荧光水凝胶的制成,不仅成功搭建了重金属离子固态检测体系,还对重金属离子进行了有效的吸附,为之后的实际应用提供了思路。
附图说明
22.为了更清楚地说明本技术实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本技术的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
23.图1为本技术实施例提供的一种壳聚糖/海藻酸钠水凝胶的制备方法流程示意图;
24.图2为本技术实施例提供的一种壳聚糖的结构示意图;
25.图3为本技术实施例提供的一种海藻酸钠的结构示意图;
26.图4为本技术实施例提供的不同油浴温度下获得的壳聚糖/海藻酸钠水凝胶的荧光示意图;
27.图5为本技术实施例提供的不同加热搅拌回流时间下获得的壳聚糖/海藻酸钠水凝胶的荧光示意图。
具体实施方式
28.为了更好的理解本技术的技术方案,下面结合附图对本技术实施例进行详细描述。
29.应当明确,所描述的实施例仅仅是本技术一部分实施例,而不是全部的实施例。基于本技术中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本技术保护的范围。
30.在本技术实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本技术。在本技术实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
31.应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,甲和/或乙,可以表示:单独存在甲,同时存在甲和乙,单独存在乙这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
32.为了便于本领域技术人员更好地理解本技术技术方案,下面首先对下述概念进行介绍。
33.碳量子点(carbon quantum dots,cd)是一类几何形状近似于球形,粒径在10nm以下的荧光纳米粒子。与传统半导体量子点相比,cd除了具有优异的光稳定性、良好的水溶性、双光子吸收面积大以及可调荧光性能外,还具有毒性低、生物相容性好、表面易功能化、原料成本低廉等优势。cd在电催化、光催化、生物医学领域以及环境检测等领域有广阔的应用前景。cd的制备方法根据合成路线划分,可分为自上而下(top-down)法和自下而上(bottom-up)法,自上而下法是指以物理或化学方式为媒介,将尺寸较大的碳基材料经过剥离、切割,进而制备碳纳米颗粒,自上而下法有:电化学氧化法、化学氧化法、激光烧蚀法等。自下而上法是将有机小分子通过被氧化或热处理,经过脱水碳化,得到尺寸相对较大的cd,自下而上法有:热分解法、水热合成法、微波合成法等。
34.生物基cd是以纤维素、柠檬酸、板栗壳、活性炭等生物质为碳源制备所得。生物质碳源具有来源广泛、天然可再生以及廉价易得等诸多优点。该碳量子点的原料成本低,且具有良好的生物相容性和稳定的荧光发射特性。与传统半导体量子点相比,cd生物相容性好且安全无毒,因此在生物标记和荧光成像等领域具有广阔应用前景。除此之外特定结构的生物质碳量子点对某些金属离子、小分子物质具有荧光猝灭效应,利用碳量子点得这种荧光性能,可以构建荧光传感探针对特定离子进行定量检测,对环境、医疗检测等领域具有应用前景。
35.水体重金属污染是水污染中较为严重的一种污染,一方面对水生生物有害,另一方面如果用含有重金属离子的水体灌溉农田,会使土壤受污染,造成农作物中重金属离子的富集,通过食物链传递,最终危害人类健康。cd作为荧光探针可以检测水体重金属污染(例如铜、锌、铁、汞、镉、铅、铬等),对预防水污染有着重要意义。例如,可以使用微波合成法,以柠檬酸为碳源,采用热解法制得一种水溶性碳量子点,其平均粒径约为12nm。这种基于荧光内滤效应而产生荧光的碳量子点荧光探针可用于cu
2+
的检测。为了评价cd对cu
2+
的选择性识别,测试了cd对多种离子(cu
2+
,fe
3+
,hg
2+
,mn
2+
,zn
2+
,cr
3+
,co
2+
,pb
2+
,ni
2+
,al
3+
,cd
2+
,k
+
和na
+
)的荧光响应。此外还测试在干扰离子存在下,cd对cu
2+
的荧光响应,研究发现在添加其他干扰离子前后,该cd对cu
2+
的响应几乎没有变化,因此可以用于选择性检测cu
2+

36.将cd掺入聚合物体系中的方法主要有以下三种,分别是物理混合,化学接枝和原位生长。
37.物理混合是制备cd-聚合物纳米复合材料的简便方法,该方法涉及将少量cd与聚合物溶液混合。纳米复合材料的形成主要归因于非共价相互作用,例如氢键,静电相互作用,π-π相互作用等。通过使用这种方法来制备cds-聚合物复合材料,适当的吸引力应是主要的驱动力。由于cd通常显示负表面电荷,因此倾向于以正电荷沉积在聚合物上。
38.cd上存在丰富的官能团,拓宽了各种化学修饰和活性部位通过酯化,醚化,氧化,酰化,烷基化和螯合等方法与聚合物形成共价键的可能性。与物理混合法相比,化学接枝由于形成不可逆的共价键,因此聚合物基质的cd在提高机械强度和保持一段时间内的初始状态方面具有优势,此外还有利于形成性能均匀的复合材料。
39.原位生长通常采用绿色且简单的一锅法热处理,cd和聚合物之间的键合模式通常包括分子间力和化学键。通过将cd的前驱物与聚合物溶液混合并使之反应来实现原位生
长,cd不会被动地并入聚合物系统中,而是可以促进3d网络的制造。因此,它将改善cd与聚合物的化学相互作用,并赋予聚合物适当的尺寸和稳定的光信号。通过cd和聚合物之间均匀且牢固的结合方法,可以提高产品的机械强度,并且不会泄漏cd。
40.现有技术中,主要关注cd的液体检测体系,存在着cd分散不稳定,容易团聚猝灭以及回收难,容易造成二次污染等问题,因此研究碳量子点复合固态检测体系对扩展碳量子点的应用十分必要。碳量子点复合固态检测体系是指将cd分散在固体基质中,以此制备固态检测体系。与cd液态检测体系相比,其优点在于可将cd均匀地锚定在固态基质的活性位点上,有效避免了cd发生聚集诱导猝灭,从而提高检测的稳定性与灵敏度。此外,cd固态检测体系的另一优点在于其便捷的回收性能。目前碳量子点复合固态检测体系的研究主要以水凝胶、气凝胶、试纸、膜材料为主,在这里将主要讨论cd与水凝胶复合的固态检测体系。
41.水凝胶虽然已广泛应用于从污水中吸附重金属离子,但是,大多数常用的水凝胶吸附剂是通过有毒的化学交联剂交联的。这些有毒试剂残留在水凝胶中的残留很难彻底清除,所以可能造成二次环境污染。因此,开发用于吸附重金属污染物的环保,高效的水凝胶吸附剂具有重要意义。物理水凝胶通过非共价相互作用而交联,而无需毒性化学交联剂,特别是,天然聚合物的物理水凝胶没有化学污染,例如有毒单体,引发剂和交联剂,并且是可降解的。海藻酸钠和壳聚糖是天然生物聚合物,与合成聚合物相比,具有许多优势,例如独特的环境友好性,低成本,可持续性,可生物降解性等。在以前的工作中,成功地制备了通过静电相互作用交联的物理水凝胶,用于染料吸附。但是,静电相互作用不足以使水凝胶具有所需的机械强度,水凝胶溶胀后往往会塌陷,这使其不适合作为重金属离子吸附剂。通常提出双网状结构以改善水凝胶的机械性能,即使在用大量水溶胀后,两个网络的协同作用也可以增强水凝胶的机械性能并保持完整性。已经开发出具有改善的机械性能的双网络水凝胶,并将其应用于重金属离子的吸附。然而,大多数研究集中在将化学交联的网络与物理交联的网络相结合,这继承了化学交联的网络对有毒化学交联剂的缺点。
42.关于cd掺入聚合物体系而言,尽管物理混合法具有操作简单,成本低廉和易于工业化的优点,但由于cd颗粒之间的自-π-π堆积相互作用引起的团聚问题会阻碍纳米颗粒在聚合物基质中的不均匀分散,从而导致机械强度差,复合材料的光学性能不稳定等。而且由于cd与聚合物之间的弱相互作用,容易导致cd外泄,造成环境污染和固态检测系统的不稳定和不准确。而化学接枝通常涉及多个步骤,复杂的反应用来进行聚合物或cd改性,且常会使用到有毒有害的有机溶剂,工艺复杂且污染较重。而原位生长法则通常反应步骤简单快捷,cd与聚合物之间的结合均匀且牢固,机械强度较好,并且不容易出现cd泄漏,大大提高了固态检测系统的稳定性。
43.因此,本技术实施例通过原位生长法构建一个均匀稳定的重金属离子固体检测和吸附系统,有效解决了液体检测体系中cd不稳定和难回收的难题,选用无毒无害的天然基高分子材料,壳聚糖和海藻酸钠。通过热处理的方式,在壳聚糖和海藻酸钠链上原位生长cd,壳聚糖与海藻酸钠之间通过静电相互作用交联,之后加入钙离子,钙离子与海藻酸钠之间形成物理交联,从而得到最终的双网状结构水凝胶。由于两个网络的协同作用,机械强度大大提高,原位生长的cd与高分子链之间的结合均匀且牢固,对重金属离子具有明显的荧光猝灭和吸附作用。整个反应绿色简单无污染,且所得产物结构稳定,离子检测灵敏度高,吸附性能上佳且机械性能强,易于携带转移和工业应用。以下进行详细说明。
44.参见图1,为本技术实施例提供的一种壳聚糖/海藻酸钠水凝胶的制备方法流程示意图。如图1所示,其主要包括以下步骤。
45.步骤s101:制备壳聚糖和海藻酸钠悬浮液,其中,所述壳聚糖和海藻酸钠的质量比为1:1。
46.图2为本技术实施例提供的一种壳聚糖的结构示意图;图3为本技术实施例提供的一种海藻酸钠的结构示意图。本技术实施例将图2所示的壳聚糖(cs)和图3所示的海藻酸钠(sa)加入水中,搅拌均匀,获得壳聚糖和海藻酸钠悬浮液。
47.在一种可选实施例中,壳聚糖和海藻酸钠悬浮液中壳聚糖和海藻酸钠的质量比为1:1。该质量比将使两种聚合物的分子间相互作用发挥最佳,若减少壳聚糖或海藻酸钠的质量,将会使得凝胶的机械强度变弱或无法成形。
48.在一种可能的实现方式中,在20ml水中加入200mg壳聚糖(cs)和200mg海藻酸钠(sa),搅拌均匀得到壳聚糖和海藻酸钠悬浮液。
49.步骤s102:在所述壳聚糖和所述海藻酸钠上原位生长碳量子点cd,获得原位生长cd后的壳聚糖和海藻酸钠悬浮液。
50.具体地,将所述壳聚糖和海藻酸钠悬浮液在油浴中加热搅拌回流,获得原位生长cd后的壳聚糖和海藻酸钠悬浮液。通过观察感应后液体出现明显的荧光,可以进一步证明了cd的原位生成。
51.为了得到具有最佳荧光强度的壳聚糖/海藻酸钠水凝胶,分别进行了油浴温度和加热搅拌回流的时间进行优化。
52.参见图4,为本技术实施例提供的不同油浴温度下获得的壳聚糖/海藻酸钠水凝胶的荧光示意图。具体地,分别在100、120、140、160、180℃下,油浴加热6h,在340nm的激发波长下进行荧光光谱测试,从图4可以看出水凝胶的荧光强度随着温度的增加呈现先增加后减少的趋势,在160℃获得最高的荧光强度,低于160℃时,cd的产出速率较慢,产量较低,荧光较弱。而当温度高于160℃时,合成的cd又发生团聚,导致荧光强度降低。因此,在一种优选实施例中,可以将油浴温度控制在140℃-180℃。优选为160℃。
53.参见图5,为本技术实施例提供的不同加热搅拌回流时间下获得的壳聚糖/海藻酸钠水凝胶的荧光示意图。具体地,在160℃的反应温度下分别反应2、4、6、8、10、12h。然后进行荧光测试,从图5可以看出,在荧光强度随着反应时间的增加也呈现先增加后减少的趋势,在最佳时间6h之前,反应时间过短,只生成了很少的一部分cd,荧光强度较弱,在6h之后,随着反应时间的增加,壳聚糖和海藻酸钠的高分子链断裂加剧,导致生成的cd无法原位生长分布在分子链上,cd团聚加剧,荧光强度急剧减弱。因此,在一种优选实施例中,可以将加热搅拌回流的时间控制在2-8h。优选为6h。
54.综上所述,一种较佳的油浴反应条件为油浴温度160℃,反应时间6h。
55.步骤s103:在所述原位生长cd后的壳聚糖和海藻酸钠悬浮液中加入乙酸,获得低机械强度壳聚糖/海藻酸钠水凝胶。
56.具体地,所述原位生长cd后的壳聚糖和海藻酸钠悬浮液与所述乙酸的体积比为40:1。在该乙酸浓度下,壳聚糖溶液可以充分溶解,且质子化的氨基将于海藻酸钠的羧基阴离子发生相互作用,形成初步的凝胶化成形;若乙酸含量过低,则壳聚糖无法全部溶解,且无法实现初步的凝胶化;若乙酸含量过高,则海藻酸钠可能会发生羧基质子化,从而影响初
步凝胶化,并且过高的乙酸也会造成浪费和污染。
57.例如,在20ml水中加入200mg壳聚糖(cs)和200mg海藻酸钠(sa),搅拌均匀得到的壳聚糖和海藻酸钠悬浮液中,加入0.5ml乙酸。壳聚糖在酸性环境中氨基质子化,与海藻酸钠的羧基阴离子发生静电相互作用,产生物理交联。但静电相互作用不足以使水凝胶具有所需的机械强度,水凝胶溶胀后往往会塌陷,这使其不适合作为重金属离子吸附剂。因此,还需要执行步骤s104。
58.步骤s104:将所述低机械强度壳聚糖/海藻酸钠水凝胶浸泡在氯化钙溶液中进行交联反应,获得高机械强度壳聚糖/海藻酸钠水凝胶。
59.具体地,可以将所述低机械强度壳聚糖/海藻酸钠水凝胶填入模具(例如,培养皿)中,浸泡在氯化钙溶液中进行交联反应10-30h(优选为24h)。钙离子与海藻酸钠之间形成物理交联,从而得到最终的双网状结构水凝胶。由于两个网络的协同作用,机械强度大大提高,原位生长的cd与高分子链之间的结合均匀且牢固,对重金属离子具有明显的荧光猝灭和吸附作用。
60.高机械强度壳聚糖/海藻酸钠水凝胶的溶胀度分析:
61.将制备的水凝胶进行冷冻干燥,将冻干的凝胶,在去离子水中浸泡24h,称量前后的质量,得到溶胀度=(m湿-m干)/m干=(2.9387-0.3752)/0.3752=6.8324。因此,水凝胶的吸水能力很强,经过冻干再吸水的过程,凝胶可以恢复原状,为之后水凝胶的运输转移,工业应用提供了可能。
62.高机械强度壳聚糖/海藻酸钠水凝胶的ph值影响分析:
63.利用盐酸和氢氧化钠配置了ph为1、3、5、7、10、12、14的溶液,将切成小块的壳聚糖/海藻酸钠凝胶在各溶液中浸泡24h,通过我们肉眼人为的观察,可以发现在ph为1的强酸性条件下,凝胶变软了,但并无出现溶解现象,而在ph为14的强碱性条件下,凝胶部分脱落,产生絮状沉淀。其余ph下凝胶强度和荧光性能均表现良好。证明了制备的水凝胶在较宽的ph范围内,性能稳定,可以适应不同的检测环境。
64.高机械强度壳聚糖/海藻酸钠水凝胶的重金属离子检测分析:
65.对重金属离子的吸附检测进行前期尝试,二价铁离子,三价铁离子,和铜离子,可以引起荧光猝灭,而锌离子的加入可以使得荧光变强,锰离子基本不变,而且对于有色重金属离子,可以肉眼看到其在水凝胶中的吸附。对荧光猝灭的原因初步分析为,重金属离子与以壳聚糖为碳源得到的富含表面羟基和氨基的cd之间的螯合反应,从而引发荧光猝灭。
66.与上述方法实施例相对应,本技术还提供了一种壳聚糖/海藻酸钠水凝胶,包括:壳聚糖链和海藻酸钠链,所述壳聚糖链和所述海藻酸钠链上原位生长cd,所述壳聚糖链和所述海藻酸钠链通过静电相互作用产生物理交联,不同的所述海藻酸钠链通过钙离子产生物理交联。可理解,该壳聚糖/海藻酸钠水凝胶即采用上述方法实施例制备的水凝胶。其具体内容够可以参见上述方法实施例的描述,为了表述简洁,在此不再赘述。
67.与上述壳聚糖/海藻酸钠水凝胶相对应,本技术实施例还提供了一种壳聚糖/海藻酸钠水凝胶的使用方法,具体地,通过上述壳聚糖/海藻酸钠水凝胶进行重金属离子的检测。
68.与上述壳聚糖/海藻酸钠水凝胶相对应,本技术实施例还提供了另一种壳聚糖/海藻酸钠水凝胶的使用方法,具体地,通过上述壳聚糖/海藻酸钠水凝胶进行重金属离子的吸
附。
69.也就是说,本技术实施例获得的壳聚糖/海藻酸钠水凝胶不仅可以用于重金属离子的检测,还可以用于重金属离子的吸附。
70.本技术实施例提供的壳聚糖/海藻酸钠水凝胶的制备方法绿色简单,选用环保的生物基高分子材料,经过快捷的一锅法热处理,在壳聚糖和海藻酸钠链上原位生长cd,使cd的制备与cd和聚合物的结合同时完成。所得荧光水凝胶由于双重物理交联的作用,机械性能优秀,结构稳定,检测方便,易于运输和工业化;在较宽的ph范围内,性能稳定,可以适应不同的检测环境;cd不易外泄且未使用有毒有害溶剂,因此对环境友好。荧光水凝胶的制成,不仅成功搭建了重金属离子固态检测体系,还对重金属离子进行了有效的吸附,为之后的实际应用提供了思路。
71.以上所述,仅为本发明的具体实施方式,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。本发明的保护范围应以所述权利要求的保护范围为准。