首页 > 化学装置 专利正文
一种3D打印用水基氮氧化铝透明陶瓷浆料及其制备方法与流程

时间:2022-02-13 阅读: 作者:专利查询

一种3D打印用水基氮氧化铝透明陶瓷浆料及其制备方法与流程
一种3d打印用水基氮氧化铝透明陶瓷浆料及其制备方法
技术领域
1.本发明涉及一种3d打印用水基氮氧化铝透明陶瓷浆料及其制备方法,属于透明陶瓷领域。


背景技术:

2.氮氧化铝透明陶瓷(alon)是al2o3和aln按照一定组分比例范围,经高温固溶生成的单一立方相光学各向同性透明陶瓷。alon透明陶瓷不仅光学透过率高,透波波段宽,而且综合力学性能优于其他透明陶瓷材料,可广泛应用于红外窗口、头罩、透明装甲等领域。
3.自1976年mccauly制备出世界上第一块半透明氮氧化铝陶瓷以来,多种制备方法和成型工艺日趋成熟。一般而言,通过干压成型,经冷等静压和烧结制度优化,即可制得光学质量优异的alon透明陶瓷。而当有复杂形状产品要求时,干压成型法则常面临成型形状有限和素坯密度分布不均匀的缺点,导致加工工艺复杂、耗时长、成本高等一系列问题。湿法成型以浆料固含量高、流动性好、素坯致密度均匀、近净尺寸成型的优势,成为制备复杂形状alon透明陶瓷材料的重要方法。而对于部分特殊的应用场景,改进湿法成型的陶瓷浆料,结合3d打印技术,经高温烧结,可以更高效、低成本地完成小尺寸、高精度、高质量透明陶瓷产品的制备工作。
4.对用于3d打印的陶瓷浆料而言,不仅需要严格控制制备过程中原料纯度以保证陶瓷材料的配比符合设计,而且需要在维持较高固含量以确保陶瓷透明化的基础上,确保拥有较好的粘度可以用于3d打印成型。相较于醇基陶瓷浆料中的有机物含量通常较高,浆料固含量过低,脱粘后素坯孔洞较多的问题,水基陶瓷浆料中有机物添加量较少,素坯致密,成品率高,有望应用于制备3d打印陶瓷浆料,以制备高光/力学性能陶瓷。
5.然而,一方面,未见用于3d打印alon透明陶瓷浆料及其制备方法的相关文献报道;另一方面,无论是碳热还原氮化法合成的纯alon相粉体,或者al2o3和aln的混合物粉体,由于存在易与水反应的al-n键,会生成氨气和al(oh)3,不仅会导致组分比例偏离预期设计,而且会影响陶瓷浆料的固含量和粘度,降低氮氧化铝透明陶瓷浆料的可打印性。


技术实现要素:

6.针对上述问题,本发明提供了一种防水化、固含量高、粘度适中的水基氮氧化铝浆料及其制备方法以及采用3d打印技术制备的alon透明陶瓷。
7.第一方面,本发明提供了一种3d打印用水基氮氧化铝透明陶瓷浆料,包括:al2o3粉体、aln粉体、二价金属氧化物/盐、稀土氧化物、弱酸、分散剂、增稠剂和水。
8.在本发明中,水基氮氧化铝透明陶瓷浆料采用al2o3和aln为主要原料,添加少量二价金属氧化物/盐、稀土氧化物和弱酸烧结助剂辅助实现陶瓷烧结透明化,添加适量分散剂和水调节浆料的固含量,浆料固含量≥75wt%,添加适量增稠剂以调节浆料的粘度,粘度在5~10pa
·
s。在前述过程中,弱酸和增稠剂分别通过修饰包裹颗粒表面和吸取浆料中水分的方式,实现减缓氮氧化铝陶瓷粉体水化过程,20小时内浆料ph值≤9,干燥后的浆料和素
坯中无al(oh)3等水化产物,且素坯相对密度不低于55%。
9.在本发明中,针对al2o3/aln混合粉体易水化的问题,采用易溶于酒精的弱酸,在球磨过程中完成对陶瓷颗粒的包覆过程,可以在一定程度上延缓陶瓷浆料的水化过程,在素坯的整个制备流程中,未检测出水化产物物相,最大程度上确保透明陶瓷的组分比例符合预期设计;弱酸含量较少,不会对陶瓷的光学性能产生明显影响。
10.在本发明中,通过分散剂和水含量优化,调节氮氧化铝陶瓷浆料的固含量;通过增稠剂含量优化,调节氮氧化铝陶瓷浆料的粘度;同时,增稠剂通过吸收浆料中的水分,实现减缓氮氧化铝粉体水化的效果。
11.较佳的,所述二价金属氧化物/盐选自mgo、mgal2o4、mgco3、caco3、srco3、baco3中的至少一种;所述稀土氧化物选自la2o3、y2o3、gd2o3、yb2o3和sc2o3中的至少一种;所述弱酸选自h3bo3、h3po4、柠檬酸中的中的至少一种;所述分散剂选自聚丙烯酸、聚丙烯酸铵、聚甲基丙烯酸铵中的至少一种;所述增稠剂选自羟乙基纤维素、羟丙基纤维素、2-羟乙基甲基纤维素中的至少一种。
12.较佳的,所述al2o3粉体和aln粉体的质量比为(90~80):(10~20);所述二价金属氧化物/盐添加量为al2o3粉体和aln粉体总质量的0.1~0.3wt%;所述稀土氧化物的添加量为al2o3粉体和aln粉体总质量的0.05~0.2wt%;所述弱酸的添加量为al2o3粉体和aln粉体总质量的0.05~0.15wt%;所述分散剂的添加量为al2o3粉体、aln粉体、二价金属氧化物/盐、稀土氧化物和弱酸总质量的0.3~0.6wt%;所述增稠剂的添加量为为al2o3粉体、aln粉体、二价金属氧化物/盐、稀土氧化物和弱酸总质量的0.40~0.80wt%。
13.较佳的,所述al2o3粉体的纯度≥99.9%,粒径为0.1~10μm;所述aln粉体的纯度≥99.9%,粒径为0.6~2μm;所述二价金属氧化物/盐的纯度≥99.99%,粒径为0.5~1.5μm;所述稀土氧化物的纯度≥99.99%;所述弱酸的纯度为分析纯;所述分散剂的纯度不低于99.9%;所述增稠剂的纯度不低于99.9%。
14.较佳的,所述水基氮氧化铝透明陶瓷浆料的固含量(al2o3粉体和aln粉体的含量)为≥75wt%,优选75~81wt%(对应43vol~53vol%)。其中固含量为浆料中陶瓷粉体的质量百分比,该陶瓷粉体包括al2o3、aln、二价金属氧化物/盐、稀土氧化物、弱酸的质量之和。若固含量低于此范围,打印所得坯体气孔率较高,素坯在干燥过程中易开裂,且不利于陶瓷透明化。若固含量过高,难以搅拌混合,无法制成可打印的浆料。
15.较佳的,所述水基氮氧化铝透明陶瓷浆料的粘度为5~10pa
·
s。若粘度过低,打印所得坯体容易发生坍塌。若粘度过高,浆料流动性差,无法实现打印。
16.较佳的,所述水基氮氧化铝透明陶瓷浆料在20小时内的ph值≤9,在该时间窗口内,浆料打印性好,可以保证氮氧化铝透明陶瓷的浆料、素坯打印和干燥流程所需时长。
17.第二方面,本发明提供了一种3d打印用水基氮氧化铝透明陶瓷浆料的制备方法,
包括:(1)制备抗水化陶瓷粉体;(2)利用抗水化陶瓷粉体制备3d打印用水基氮氧化铝透明陶瓷浆料。具体包括:按照所述氮氧化铝陶瓷粉体组分比例称取al2o3、aln、二价金属氧化物/盐、稀土氧化物和弱酸,与酒精和高纯氧化铝球混合后球磨,烘干过筛后得到抗水化氮氧化铝陶瓷粉体;将抗水化处理的陶瓷粉体、分散剂、水和高纯氧化铝球混合后球磨调节浆料固含量后,再加入增稠剂,离心混合调节浆料粘度,制备出氮氧化铝陶瓷浆料。
18.较佳的,将al2o3粉体、aln粉体、二价金属氧化物/盐、稀土氧化物、弱酸、乙醇和高纯氧化铝球进行球磨混合,再经干燥和过筛处理,得到抗水化陶瓷粉体;优选地,所述球磨混合的转速为220~360转/分钟,时间为24~48小时;更优选地,所述球磨混合的转速为270转/分钟,时间为36小时;优选地,所述干燥的温度为50~100℃,时间为20~48小时;更优选地,所述干燥的温度为60℃,时间为24小时;所述过筛的筛子目数在80~160目,过筛次数为至少1次;更优选地,所述过筛的目数为100目,过筛次数为1次。
19.较佳的,先将抗水化陶瓷粉体、分散剂、水和高纯氧化铝球进行球磨混合,再加入增稠剂进行离心混合,得到所述3d打印用水基氮氧化铝透明陶瓷浆料;优选地,球磨混合后陶瓷浆料的固含量≥75wt%,所述球磨混合的转速为200~300转/分钟,时间为0.5~2小时;更优选地,所述球磨混合的转速为240转/分钟,时间为1小时;优选地,离心混合后陶瓷浆料的粘度为5~10pa
·
s,所述离心混合的转速为1000~2000转/分钟,时间为5~10分钟;更优选地,所述球磨混合的转速为1500转/分钟,时间为5分钟。
20.第三方面,本发明提供了一种3d打印制备氮氧化铝透明陶瓷的方法,包括3d打印、成型和烧结透明化。具体地,将水基氮氧化铝透明陶瓷浆料装入打印注射器并密封,先经过真空条件下离心除气,然后按照设定的打印程序,打印出陶瓷素坯(实现陶瓷的3d打印成型);将所得陶瓷素坯经烘干、脱粘和烧结后,得到光学质量优异的的单相的氮氧化铝透明陶瓷。同时,干燥后的陶瓷素坯中无al(oh)3等水化产物相,相对密度不低于55%。
21.较佳的,所述真空离心除气条件为:在1000~2000转/分钟、1~10kpa真空度下离心除气5~15分钟;优选地,所述真空离心除气的转速在1500转/分钟、真空度为5kpa,离心除气时间为10分钟。
22.较佳的,所述烘干的环境为恒温恒湿环境,温度为15~35℃,湿度为80~85%,时间为12~48小时;所述脱粘的气氛为氧气或空气气氛,温度为500~700℃,时间为2~10小时,脱粘后的样品相对密度不低于55%;优选地,所述脱粘的气氛为空气气氛,温度为650℃,时间为5小时;所述烧结的气氛为流动氮气气氛(流量为0.5~2l/min,优选1.5l/min),温度为1900~2000℃,时间为5~35小时。优选地,所述烧结的温度为1960℃,氮气流量1.5l/min,时间为10小时。
23.第四方面,本发明提供了一种根据上述方法制备的氮氧化铝透明陶瓷,所述氮氧化铝透明陶瓷的物相为立方尖晶石相,相对密度≥99.9%;1mm厚样品在780nm处的直线透
过率≥80%,硬度大于等于18gpa(hv0.3kgf),断裂韧性大于等于1.7mpa
·m1/2
(hv0.3kgf)。
24.与现有技术相比,本发明具有以下特点:(1)本发明的水基氮氧化铝陶瓷浆料具备减缓水化过程的特性,可以在特定时间段内确保最终的氮氧元素比例在设计范围内可控;(2)本发明的水基氮氧化铝陶瓷浆料兼备抗水化、固含量高、粘度适中的优点,尤其适用于3d打印成型精细复杂的陶瓷样品;(3)本发明的氮氧化铝陶瓷浆料,经3d打印成型和高温烧结,制备出的氮氧化铝透明陶瓷光/力学质量优异,证实该水基浆料的实用性;(4)本发明的配方中不含pb、cd等挥发性或重金属,是一种环保健康的材料;(5)本发明所述的材料,原材料国内市场供应充足,价格低廉,使高性能透明陶瓷制备的低成本化成为可能;(6)本发明所述的浆料主要采用行星球磨混料,素坯采用3d打印制备成型,陶瓷采用无压烧结,陶瓷材料性能稳定,适用于批量化生产。
附图说明
25.图1为采用实施例1所述方法制得的固含量为40wt%的水基alon浆料的ph随时间的变化规律,浆料在20小时内的ph值稳定在9以下(同样条件下测得纯水的ph值为8.1);由于实施例1中浆料固含量过高,无法直接测试ph值,在其他条件不变的前提下,采用固含量为40wt%的水基alon浆料估计固含量为79wt%浆料的ph随时间的变化规律;图2为实施例1所述方法制得的不同阶段素坯的xrd衍射图谱,未见水化产物物相出现;图3为实施例1所述方法制得的alon透明陶瓷和透过率曲线,1mm厚样品在780nm处的透过率为81.90%;图4为对比例1和实施例1所得alon透明陶瓷浆料经3d打印后制得的干燥素坯;图5为实施例2和对比例2制备的alon透明陶瓷浆料照片。
具体实施方式
26.以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
27.在本公开中,以al2o3和aln为主要原料,添加少量二价金属氧化物/盐、稀土氧化物、和弱酸作为烧结助剂辅助透明化,在酒精中经混合、干燥和过筛后得到陶瓷粉体;加入适量分散剂和水,调节浆料的固含量,使其不低于75wt%,加入适量增稠剂调节浆料粘度,粘度为5~10pa
·
s,离心混合得到氮氧化铝陶瓷浆料;弱酸和增稠剂分别通过修饰陶瓷粉体颗粒表面和吸取浆料中水分的方式延缓氮氧化铝陶瓷粉体的水化,20小时内浆料的ph值≤9;然后,经3d打印成型、干燥和脱粘,素坯中始终未检测到al(oh)3等水化产物物相,脱粘后的素坯相对密度不低于55%,经高温烧结,可以制备出光学质量优异的氮氧化铝透明陶瓷。
28.本发明制备方法简单,可确保陶瓷组分的精确控制,采用上述方法获得的氮氧化铝透明陶瓷的物相为立方结构尖晶石相,致密度≥99.9%,1mm厚样品在780nm处的直线透过率≥80%,硬度不低于18gpa(hv0.3kgf),断裂韧性不低于1.7mpa
·m1/2
(hv0.3kgf)。以下
示例性地说明本发明提供的氮氧化铝透明陶瓷的制备方法。
29.抗水化氮氧化铝陶瓷粉体制备。按照所述氮氧化铝陶瓷粉体组分比例称取al2o3、aln、二价金属氧化物/盐、稀土氧化物和弱酸,与酒精和高纯氧化铝球混合后球磨,经烘干过筛后得到抗水化处理的氮氧化铝陶瓷粉体。
30.水基氮氧化铝陶瓷浆料制备。将抗水化处理的陶瓷粉体、分散剂、水和高纯氧化铝球混合后球磨混合,一段时间后,加入稠化剂(增稠剂),离心混合,得到水基氮氧化铝陶瓷浆料。
31.3d打印成型。将水基氮氧化铝陶瓷浆料装入打印注射器(针头直径可为50μm-800μm)并密封,在1000~2000转/分钟、1~10kpa真空度下离心除气5~15分钟。然后按照设定的打印程序,打印出透明陶瓷素坯。在恒温恒湿环境下烘干,在氧气或空气气氛中脱粘,温度设定在500~700℃之间,时间为2~10小时。
32.高温烧结。在流动氮气气氛中,烧结温度设定在1900~2000℃之间,时间为5~35小时,烧制出氮氧化铝透明陶瓷。
33.在本公开中,采用溶于酒精的少量弱酸和增稠剂处理,粉体和素坯中始终未检测到al(oh)3等水化产物物相,固含量不低于75wt%,素坯相对密度不低于55%,制得透明陶瓷的物相为立方尖晶石相,致密度≥99.9%,经双面抛光处理后,1mm厚样品在780nm处透过率不低于80%,硬度不低于18gpa(hv0.3kgf),断裂韧性不低于1.7mpa
·m1/2
(hv0.3kgf)。
34.下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
35.实施例1:主要包括抗水化氮氧化铝陶瓷粉体制备、水基氮氧化铝陶瓷浆料制备、3d打印成型、高温烧结等步骤:(1)抗水化氮氧化铝陶瓷粉体制备:根据表1,按照质量比为84.70:15.30分别称取al2o3粉体(纯度>99.90%,平均粒径为0.65μm)和aln粉体(纯度>99.90%,平均粒径为0.85μm)。添加0.40wt%的mgal2o4(纯度>99.99%)和0.10wt%的y2o3(纯度>99.99%)作为烧结助剂,添加0.12wt%的h3bo3(纯度>99.99%)作为水化抑制剂,以无水乙醇为分散介质,采用高纯氧化铝球磨罐,高纯氧化铝球为球磨介质对混合粉体进行球磨混合,在270转每分的条件下球磨混合36小时,球磨后的浆料置于60℃的烘箱中干燥24小时,然后过100目筛,得到抗水化氮氧化铝陶瓷粉体;(2)水基氮氧化铝陶瓷浆料制备:按照每100g抗水化处理氮氧化铝陶瓷粉体添加0.40g质量比称取分散剂聚丙烯酸,以陶瓷粉体、水和高纯氧化铝球球磨混合,球磨混合的转速为240转/分钟,时间为1小时;按照每100g抗水化处理氮氧化铝陶瓷粉体添加0.60g质量比称取增稠剂羟丙基纤维素,加入浆料并离心混合,转速为1500转/分钟,时间为5分钟;(3)3d打印成型:将水基氮氧化铝陶瓷浆料装入打印注射器并密封,在1500转/分钟、5kpa真空度下离心除气10分钟。然后按照设定的打印程序,打印出透明陶瓷素坯。将所得素坯在温度为25℃,湿度为85%的恒温恒湿环境下烘干24小时。在空气气氛中,经650℃脱粘处理2小时;
(4)高温烧结:成型后的素坯置于坩埚中,在流量为1.5l/min的流动氮气气氛下,以10℃/min的升温速率升至1960℃再进行保温,时间为10小时。
36.表1为实施例中各种材料的比例和陶瓷烧结温度工艺参数:
37.表2为实施例1中所得氮氧化铝透明陶瓷的光学和力学性能:
38.如表2可以看出,采用前述抗水化处理的氮氧化铝陶瓷浆料,固含量为79wt%,经3d打印成型,脱粘后的干燥素坯相对密度不低于55%,经高温烧结,得到的陶瓷物相为尖晶石相,致密度为99.9%,1mm厚样品在780nm处的透过率为81.90%,3.7μm处的透过率为82.38%,维氏硬度为18.56gpa(hv0.3kgf),断裂韧性1.74mpa
·m1/2
(hv0.3kgf)。
39.实施例2本实施例2氮氧化铝陶瓷浆料的制备过程参照实施例1,区别在于:控制水的加入量使得氮氧化铝陶瓷浆料的固含量为81wt%。
40.对比例1本对比例1中氮氧化铝陶瓷浆料的制备过程参照实施例1,区别在于:控制水的加入量使得氮氧化铝陶瓷浆料的固含量为74wt%,小于本发明要求的最低值75wt%。从图4中可知本对比例1中固含量<75wt%的alon透明陶瓷浆料经3d打印后制得的干燥素坯,由于
内部气孔较多,干燥过程中开裂。实施例1中固含量为79wt%的alon透明陶瓷浆料经3d打印后制得的干燥素坯完好。
41.对比例2本对比例2氮氧化铝陶瓷浆料的制备过程参照实施例1,区别在于:控制水的加入量使得氮氧化铝陶瓷浆料的固含量为82.7wt%。参照图5,实施例2中固含量为81wt%的alon透明陶瓷浆料流动性较好。本对比例2中固含量为82.7wt%的alon透明陶瓷浆料固含量过高,无法制备浆料,后续无法用于3d打印。
42.以上实施例仅示例性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。